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The advection-diffusion heat equation:   
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IF(V <0) THEN

             (j) = 1

      ELSE

             (j) = 0

      ENDIF
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 CALL SUPWIND(T,V, ) :      

   









 
  

    

Upwind – discretization: the idea here is 

that the matter/energy  in a test volume V is 

influenced mainly by the flux coming from 

the up-stream direction rather than from the 

down-stream.  
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In the explicit case, the diffusion and advection operators are evaluated, using the  

values from the old time level. The procedure runs as follows: 
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Explicit calculation:
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1:  Construct an explicit solver for solving the following  advection-diffusion equation:

      + ,     in the interval  [0  x 1] subject to the ICs: 
   

 

Q

T UT T

t x x




  
  

  

1    x 0.5 1    x=0
     T(t=0, x) = ,   BCs:  T= , where U = const.= 1. 

0    else  0    x=1  

        

       Use x=0.01 to show the resulting profiles (overplotted)  of  T after 

       time=0.1, 0.

 
 
 



25, 0.5, 0.75 and 1.0 and using 1.0, 0.5, 0.1, 0.01 and 0.001.

       Use the upwind discretization and compare it with the central difference scheme. 
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 Linear systems of equations –(LSEs) 

 

The system of equations: 

 

 

 

 

 

 

 

 

is said to be linear, if  ajk are constant coefficients and do not depend 

on the solution itself.  Xs are unknowns and the bs are known quantities. 

 

Example-1:   

 

 

 

  

 

 

 

 

 

 

 

  

 

 

           Example-2: 

 

 

 

11 1 12 2 13 3 1n n 1

21 1 22 2 23 3 2n n 2

n1 1 n2 2 n3 3 nn n K

a x +  a x +  a x +   + a x  = b (1)

a x +  a x +  a x +  + a x  = b (2)
  

a x +  a x +  a x + + a x  = b ( )n

1 2 3

1 2 3

1 2 3

-x  + 2x - x  = 0.6

The system of equations : x  + 1x - 2x  = 0.8 is linear.

-2x  + 2x - 3x  = 1.2

2
1 1 2 31 2 3

1 2 3 1 2 2 3

3/2

1 3 2 31 2 3

But thefollowing systems of equations :

-x  + 2x x - x  = 0.6-x  + 2x - x  = 0.6

x  + 1x - 2x  = 0.8 x  + 1x - 2x x  = 0.8

-4x x  + 2x - 3x  = 1.2-2x  + 2x - 3x = 1.2

arenonlinear.

1 2

1 2

1 2 2

11 2

2x -1x = 1
; 2 Eq2 - Eq1

x +2x =-2 This eliminationmethod

is due to Gauss.2x -1x = 1 1

00x +5x =-5

x

x
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Generalization of the Gauss elimination method: 

Assume we are given the following set of linear equations: 

  

 

 

 

We first divide equation (1)  by the coefficient of x1. Equation (1) now reads: 

 

 

 

Then we multiply equation (1) with the coefficient of x1 from equation (2): 

 

 

and subtract it from equation (2): 

 

 

 

We may re-write this equation in the following compact form: 

 

 

 

11 1 12 2 13 3 1n n 1

21 1 22 2 23 3 2n n 2

n1 1 n2 2 n3 3 nn n K

a x +  a x +  a x +   + a x  = b (1)

a x +  a x +  a x +  + a x  = b (2)
  

a x +  a x +  a x + + a x  = b ( )n

http://3.bp.blogspot.com/-asw6o3d1fhA/TV9hiormh0I/AAAAAAAAB4U/pQgaZ4uUqsk/s1600/gauss-elimination-system-of-equations-solver-dividing-with-coefficient.gif
http://3.bp.blogspot.com/-k1gEQItDN0Q/TV9jJY7fh3I/AAAAAAAAB4Y/7QTpWJ_IaHQ/s1600/gauss-elimination-system-of-equations-solver-change-coefficient.gif
http://3.bp.blogspot.com/-y_f7833q3S8/TV9n9DceUtI/AAAAAAAAB4g/Z17hXrCZvrk/s1600/gauss-elimination-system-of-equations-solver-simplified-form.gif
http://4.bp.blogspot.com/-pQVuY_dBZUg/TV9mwX0batI/AAAAAAAAB4c/5mwY-kzHS5E/s1600/gauss-elimination-system-of-equations-solver-first-eliminationt.gif
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Similarly, we adopt this procedure to eliminate all the coefficients
1 n,2a 


, so to get the 

system in the form: 

  

 

 

 

 

We now focus our 

attention on the Equations ( 3n ) and repeat the above-described procedure to eliminate 

The coefficients 3 n,3a 


  by suitable multiplication and subtraction Eq. (2) from  them. The 

same procedure is employed then for Eq (4) and then for Eq.(5) until Eq. (n) is recovered, so 

to end up with the following triangular form:  

  

 

 

 

 

But the last equation, i.e., Eq. (n), has a single unknown only, so that it can be solved:   

  

 

 
1Where denote the value of  the coefficient after performing n-1 algebraic manupulation.n

 

Once we obtained the value of  xn, we can then use it   to backward-substitute it  

in Eq. (n-1) , which is in turn used for backward  

substitution in Eq. (n-2) and so on as follows:   

 

http://3.bp.blogspot.com/-zKhshXbLzXM/TV_QSH1EBeI/AAAAAAAAB4k/EaYCF46tfJE/s1600/gauss-elimination-system-of-equations-solver-eliminated-equations.gif
http://2.bp.blogspot.com/-rQ8y05KrcCI/TV_c8Pbj-3I/AAAAAAAAB44/TMUAKtj1Vk0/s1600/gauss-elimination-system-of-equations-solver-final-equations.gif
http://2.bp.blogspot.com/-ga6dDqjQATE/TV_b7BxlPUI/AAAAAAAAB40/uXJpPhJwx-w/s1600/gauss-elimination-system-of-equations-solver-1st-backward-substitution.gif
http://4.bp.blogspot.com/-S6vA4EWbjaE/TV_ZJcmdOxI/AAAAAAAAB4w/Jam0b4-8MIM/s1600/gauss-elimination-system-of-equations-solver-backward-substitution.gif
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 Computational costs (Gauss Elimination):   

 Forward elimination  ~  n3/3 

 Backward /forward substitution  ~ n2
 

 

LU- decomposition: 

Since  the inversion of a triangular 

matrix is actually a straightforward 

procedure (just backward  substitution, 

and therefore scales as n2), it is 

suggested to examine the possibility of 

decomposing the Matrix in such a manner, that it is the product of two triangular matrices: 

Example: 

11 11 12 13 14

21 22 22 23 24

31 32 33 33 34

41 42 43 44 44

11 11

11 12

Consider the matrix A:

2 3 1 5

6 13 5 19
A=

2 19 10 23

4 10 11 31

The equations to be solved:

2

= 3

l u u u u

l l u u u

l l l u u

l l l l u

l u

l u

    
    
      
    
    

    





  and so on
 

 

 

 

 

 

Computational costs(LU): could be smaller or even larger than that of Gauss elimination 

(n3), depending on the sparsity of the matrix A. 

Q2:  complete the set of equations to be    
                 solved and prove that:       
              1 0 0 0 2 3 1 5

3 1 0 0 0 4 2 4
L= ,  U=  

1 4 1 0 0 0 1 2

2 1 7 1 0 0 0 3

   
   
   
   
   
   

 

                                     

 

   Total operations:  ~ n3 
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Thomas Algorithm: 

Given is the following linear system of  
 equations: 
 

 

 

 

 

 

This set of equations may be solved as follows: 

1. Eliminate x1 from Eq.1 and substitute in Eq. 2 

2. Eliminate x2 from Eq.2 and substitute in Eq. 3 

3. Apply this forward elimination until Eq. (n) is recovered and then solve it for xn.  

4.  Perform the backward substitution until Eq.1 is reached. 

 

 

 

 

 

 

 

 

 

 

 

 

1 1 1 2 1

2 1 2 2 2 3 2

1 n-1 n 

+b x - c x                    = d

-a x +b x - c x          = d

           

                  

                 -a x +b x = dn n n











1 2

1 2 3

2 3 4

3

Q1/L7&8: Solve the following set of linear equations, using the Thomas Algorithm:

         2x - x  = 0.2

-x  + 2x - x  = 0.6

                                                        -x  + 2x - x  = 0.8

-x 4 5

4 5

 + 2x - x  = 1.2

      -2x +2x  = 1.2

The tri-diagonal non-pivoting elimination method is stable if: 

1. aj, bj and cj > 0   ⇔ diagonal elements must be positive,  

                                   the off-diagonal are negative. 

2. bj  >  aj + cj                ⇔ row-diagonally dominant  

3. bj  >  aj+1 + cj-1    ⇔ column-diagonally dominant 
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 Implicit solution procedure 

The heat equation   

An implicit discretization method yields:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2 2 1

1

3 3

1

1

1

1 n 

3 1

1 3 1

1

1 3

                                     

           A                      RHS

n n n

n n

n n

j j

n n n

J J J

n

T T T

T T

T T

T T T

T













       
    
   
    
       

   



1 1 1 1 1

1 1

1 1 1 1

1 1 2

1 1 1

1 1

x x x

 2 ,     where s =
x

 equivalently:

           (1 2 ) =   
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The Crank-Nicholson Method: 
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The Tri-diagonal solver:   GTSL 

 

CALL GTSL(Nel,Sub,Diag,Super,RHS,INFO) 

       where  

                   Nel    =  total number of diagonals 

                   Sub    =  sub-diagonal entries   

                   Diag   =  diagonal entries 

                   Super = super-diagonal entries 

                   RHS   = the entries on the right hand side 

                   INFO = 0,  if all entries are defined 

                                 k, if entry number k is not appropriately defined  
  

  

1. Test case: Subd= Supd=0, Diag=1  X=RHS 

2.  Subd(1) = Supd(J) = 0 
250

( )
100where 1 1 and for
j

e




  

   

old
j-1 j j+1 j

old
j 1 100

Q3:  Use the GTSLs solver to solve the following 

system of linear equations :      -T  + 3T -T = T ,  

T  ,T T j=1, 2, ... 100.
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The advection-diffusion heat equation: implicit solution procedure 

In the implicit case, the diffusion and advection operators are evaluated, using the  

values from the NEW time level.  The procedure runs as follows: 
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Implicit calculation:

T -T V T -V T 1
 +   

δt x x x x
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               S T  + D T  + S T  =T  

Q4-1: Compute: S ,  D ,  S .

4 2 :  Prove that upwind-discretization boosts the diagonal
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T T T T

Q  dominance

        of the coefficient matrix.
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 We may combine explicit and implicit time stepping to generate the damped 

CN-method as follows: 
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Crank-Nicholson method for advection-diffusion equations:
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5 :  Construct an implicit tool to solve the following  advection-diffusion equation:

      + ,     in the interval [0  x
   

 



          
         

  
 

  

n n n n

j j j j

m m

j j

T T T T

Q

T UT T

t x x


CN

 1] subject to the ICs:   

      T(t=0, 0.3 x 0.5) = 1, T(t=0, 0 x 0.3) = T(t=0, 0.5 x 1.0) = 0

and 

        BCs:  T(0, x=0) = T(t, x=1) = 0, where U = const.= 1.

       Use x
1 1 2

= =0.01 
2 1



   

 













t

t





to show the resulting profiles (overplotted) 

       of  T at t=0.1, 0.25, 0.5, 0.75 and 1.0 for the following  values:  

       1.0, 0.5, 0.1, 0.01 and 0.0 .

 

 

01





CN CN

We define the parameter 

, to be  0 1.  


