Images of modular Galois representations mod ℓ

Samuele Anni

Universiteit Leiden - Université Bordeaux 1

Leiden, ALGANT meeting;
23rd February 2013
1 Residual modular Galois representations
- Modular curves and Modular Forms
- Residual modular Galois representations
- Image of Residual modular Galois representations
- Algorithm
- Example: projective image S_4 in characteristic 3

2 A local-global principle for isogenies of prime degree over number fields
Let us fix a positive integer $n \in \mathbb{Z}_{>0}$.

Definition

The congruence subgroup $\Gamma_1(n)$ of $\text{SL}_2(\mathbb{Z})$ is the subgroup given by

$$\Gamma_1(n) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) : a \equiv d \equiv 1, \ c \equiv 0 \mod n \right\}.$$

The integer n is called **level** of the congruence subgroup.
Over the upper half plane:

\[\mathbb{H} = \{ z \in \mathbb{C} | \text{Im}(z) > 0 \} \]

we can define an action of \(\Gamma_1(n) \) via

fractional transformations:

\[\Gamma_1(n) \times \mathbb{H} \rightarrow \mathbb{H} \]

\[(\gamma, z) \mapsto \gamma(z) = \frac{az + b}{cz + d} \]

where \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \).

Moreover, if \(n \geq 4 \) then \(\Gamma_1(n) \) acts freely on \(\mathbb{H} \).
Definition

*We define the **modular curve** $Y_1(n)_\mathbb{C}$ to be the non-compact Riemann surface obtained giving on $\Gamma_1(n) \backslash \mathbb{H}$ the complex structure induced by the quotient map.*

*Let $X_1(n)_{\mathbb{C}}$ be the compactification of $Y_1(n)_{\mathbb{C}}$.***
Definition

We define the modular curve $Y_1(n)_{\mathbb{C}}$ to be the non-compact Riemann surface obtained giving on $\Gamma_1(n) \backslash \mathbb{H}$ the complex structure induced by the quotient map.

*Let $X_1(n)_{\mathbb{C}}$ be the compactification of $Y_1(n)_{\mathbb{C}}$.***

Fact: $Y_1(n)_{\mathbb{C}}$ can be defined algebraically over \mathbb{Q} (in fact over $\mathbb{Z}[1/n]$).
The group $GL_2^+(\mathbb{Q})$ acts on \mathbb{H} via fractional transformation, and its action has a particular behaviour with respect to $\Gamma_1(n)$.
The group $GL_2^+ (\mathbb{Q})$ acts on \mathbb{H} via fractional transformation, and its action has a particular behaviour with respect to $\Gamma_1(n)$.

Proposition

$\forall g \in GL_2^+ (\mathbb{Q})$ the discrete groups $g\Gamma_1(n)g^{-1}$ and $\Gamma_1(n)$ are commensurable, i.e. $g\Gamma_1(n)g^{-1} \cap \Gamma_1(n)$ is a subgroup of finite index in $g\Gamma_1(n)g^{-1}$ and $\Gamma_1(n)$.

![Diagram of modular curves and modular forms](image)
We can define operators on $Y_1(n)$ through the correspondences given before:
We can define operators on $Y_1(n)$ through the correspondences given before:

- the **Hecke operators** T_p for every prime p, using

 $$g = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \in GL_2^+(\mathbb{Q})$$
We can define operators on $Y_1(n)$ through the correspondences given before:

- **the Hecke operators** T_p for every prime p, using
 $$g = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \in GL_2^+(\mathbb{Q})$$

- **the diamond operators** $\langle d \rangle$ for every $d \in (\mathbb{Z}/n\mathbb{Z})^*$, using
 $$g = \begin{pmatrix} d^{-1} & 0 \\ 0 & d \end{pmatrix} \in GL_2^+(\mathbb{Q}).$$
For $n \geq 5$, ℓ prime not dividing n, and k integer we define, à la Katz:
For \(n \geq 5 \), \(\ell \) prime not dividing \(n \), and \(k \) integer we define, à la Katz:

\[
S(n, k)_{\mathbb{F}_\ell} = H^0(X_1(n)_{\mathbb{F}_\ell}, \omega^k(-\text{Cusps})).
\]
For $n \geq 5$, ℓ prime not dividing n, and k integer we define, à la Katz:

$S(n, k)_{\overline{\mathbb{F}}_\ell} = H^0(X_1(n)_{\overline{\mathbb{F}}_\ell}, \omega^k(-\text{Cusps})).$

$S(n, k)_{\overline{\mathbb{F}}_\ell}$ is a finite dimensional $\overline{\mathbb{F}}_\ell$-vector space, equipped with Hecke operators T_n ($n \geq 1$) and diamond operators $\langle d \rangle$ for every $d \in (\mathbb{Z} / n\mathbb{Z})^*$.
For $n \geq 5$, ℓ prime not dividing n, and k integer we define, à la Katz:

\[
S(n, k)_{\mathbb{F}_\ell} = H^0(X_1(n)_{\mathbb{F}_\ell}, \omega \otimes^k (\text{Cusps})).
\]

$S(n, k)_{\mathbb{F}_\ell}$ is a finite dimensional \mathbb{F}_ℓ-vector space, equipped with Hecke operators T_n ($n \geq 1$) and diamond operators $\langle d \rangle$ for every $d \in (\mathbb{Z} / n\mathbb{Z})^*$. Analogous definition in characteristic zero and over any ring where n is invertible.
One may think that mod ℓ modular forms come from reduction of characteristic zero modular forms mod ℓ:

$$S(n, k)_{\mathbb{Z}[1/n]} \rightarrow S(n, k)_{\mathbb{F}_\ell}.$$
One may think that mod ℓ modular forms come from reduction of characteristic zero modular forms mod ℓ:

$$S(n, k)_{\mathbb{Z}[1/n]} \rightarrow S(n, k)_{\mathbb{F}_\ell}.$$

Unfortunately, this map is not surjective for $k = 1$.
One may think that mod ℓ modular forms come from reduction of characteristic zero modular forms mod ℓ:

$$S(n, k)_{\mathbb{Z}[1/n]} \to S(n, k)_{\mathbb{F}_{\ell}}.$$

Unfortunately, this map is not surjective for $k = 1$. Even worse: given a character $\epsilon: (\mathbb{Z}/n\mathbb{Z})^* \to \mathbb{C}^*$ the map

$$S(n, k, \epsilon)_{\mathcal{O}_K} \to S(n, k, \bar{\epsilon})_{\mathbb{F}}$$

is not always surjective even if $k > 1$, where \mathcal{O}_K is the ring of integers of the number field where ϵ is defined, $\mathbb{F}_{\ell} \subseteq \mathbb{F}$ and

$$S(n, k, \epsilon)_{\mathcal{O}_K} = \{ f \in S(n, k)_{\mathcal{O}_K} \mid \forall d \in (\mathbb{Z}/n\mathbb{Z})^*, \langle d \rangle f = \epsilon(d)f \}.$$
Definition

We define the **Hecke algebra** $\mathcal{T}(n, k)$ of $S(n, k)_C$ as the \mathbb{Z}-subalgebra of $\text{End}_C(S(\Gamma_1(n), k)_C)$ generated by the Hecke operators T_p for every prime p and the diamond operators $\langle d \rangle$ for every $d \in (\mathbb{Z} / n\mathbb{Z})^*$.
Definition

We define the Hecke algebra $\mathcal{T}(n, k)$ of $S(n, k)_\mathbb{C}$ as the \mathbb{Z}-subalgebra of $\text{End}_{\mathbb{C}}(S(\Gamma_1(n), k)_\mathbb{C})$ generated by the Hecke operators T_p for every prime p and the diamond operators $\langle d \rangle$ for every $d \in (\mathbb{Z}/n\mathbb{Z})^\ast$.

Fact: $\mathcal{T}(n, k)$ is finitely generated as \mathbb{Z}-module.

We can associate a Hecke algebra $\mathcal{T}(n, k, \epsilon)$ to each $S(n, k, \epsilon)_\mathbb{C}$.
Theorem (Shimura, Deligne)

Let n and k be positive integers. Let F be a finite field of characteristic ℓ, $\ell \nmid n$, and $f : \mathbb{Z}(n, k) \to F$ a surjective morphism of rings. Then there is a continuous semi-simple representation: $\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(F)$ that is unramified outside $n\ell$ such that for all p not dividing $n\ell$ we have, in F:

$$\text{Tr}(\rho_f(\text{Frob}_p)) = f(T_p) \quad \text{and} \quad \text{det}(\rho_f(\text{Frob}_p)) = f(\langle p \rangle)p^{k-1}.$$

Such a ρ_f is unique up to isomorphism.
Theorem (Shimura, Deligne)

Let n and k be positive integers. Let \mathbb{F} be a finite field of characteristic ℓ, $\ell \nmid n$, and $f : T(n, k) \to \mathbb{F}$ a surjective morphism of rings. Then there is a continuous semi-simple representation: $\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F})$ that is unramified outside $n\ell$ such that for all p not dividing $n\ell$ we have, in \mathbb{F}:

$$\text{Tr}(\rho_f(\text{Frob}_p)) = f(T_p) \quad \text{and} \quad \det(\rho_f(\text{Frob}_p)) = f(\langle p \rangle)p^{k-1}.$$

Such a ρ_f is unique up to isomorphism.
Theorem (Shimura, Deligne)

Let \(n \) and \(k \) be positive integers. Let \(\mathbb{F} \) be a finite field of characteristic \(\ell \), \(\ell \nmid n \), and \(f : \mathbb{T}(n, k) \rightarrow \mathbb{F} \) a surjective morphism of rings. Then there is a continuous semi-simple representation:
\[
\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{F})
\]
that is unramified outside \(n \ell \) such that for all \(p \) not dividing \(n \ell \) we have, in \(\mathbb{F} \):

\[
\text{Tr}(\rho_f(\text{Frob}_p)) = f(T_p) \quad \text{and} \quad \det(\rho_f(\text{Frob}_p)) = f(\langle p \rangle)p^{k-1}.
\]

Such a \(\rho_f \) is unique up to isomorphism.

Computing \(\rho_f \) is “difficult”,

Theorem (Shimura, Deligne)

Let n and k be positive integers. Let \mathbb{F} be a finite field of characteristic ℓ, $\ell \nmid n$, and $f : \mathbb{T}(n, k) \to \mathbb{F}$ a surjective morphism of rings. Then there is a continuous semi-simple representation: $\rho_f : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F})$ that is unramified outside $n\ell$ such that for all p not dividing $n\ell$ we have, in \mathbb{F}:

$$\text{Tr}(\rho_f(\text{Frob}_p)) = f(T_p) \text{ and } \det(\rho_f(\text{Frob}_p)) = f(\langle p \rangle)p^{k-1}.$$

Such a ρ_f is unique up to isomorphism.

Computing ρ_f is “difficult”, but theoretically it can be done in polynomial time in $n, k, \#\mathbb{F}$.

Image of Residual modular Galois representations

Algorithm

Example: projective image S_4 in characteristic 3
QUESTION

Can we compute the image of a residual modular Galois representation without computing the representation?
Main ingredients:

Theorem (Dickson)

Let ℓ be an odd prime and H a finite subgroup of $\text{PGL}_2(\overline{\mathbb{F}_\ell})$. Then a conjugate of H is one of the following groups:

- a finite subgroups of the upper triangular matrices;
- $\text{SL}_2(\mathbb{F}_\ell)/\{\pm 1\}$ or $\text{PGL}_2(\mathbb{F}_\ell)$ for $r \in \mathbb{Z}_{>0}$;
- a dihedral group D_{2n} with $n \in \mathbb{Z}_{>1}$, $(\ell, n) = 1$;
- or it is isomorphic to A_4, S_4 or A_5.
Theorem (Khare, Wintenberger, Dieulefait) - Serre’s Conjecture

Let ℓ be a prime number and let $\rho: \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\overline{\mathbb{F}}_\ell)$ be an odd, absolutely irreducible, continuous representation. Then ρ is modular of level $N(\rho)$, weight $k(\rho)$ and character $\epsilon(\rho)$.
Theorem (Khare, Wintenberger, Dieulefait) - Serre’s Conjecture

Let ℓ be a prime number and let $\rho : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\overline{\mathbb{F}}_\ell)$ be an odd, absolutely irreducible, continuous representation. Then ρ is modular of level $N(\rho)$, weight $k(\rho)$ and character $\epsilon(\rho)$.

$N(\rho)$ (the level) is the Artin conductor away from ℓ.
Theorem (Khare, Wintenberger, Dieulefait) - Serre’s Conjecture

Let ℓ be a prime number and let $\rho : \text{Gal}(\overbar{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\overbar{\mathbb{F}}_\ell)$ be an odd, absolutely irreducible, continuous representation. Then ρ is modular of level $N(\rho)$, weight $k(\rho)$ and character $\epsilon(\rho)$.

$N(\rho)$ (the level) is the Artin conductor away from ℓ.

$k(\rho)$ (the weight) is given by a recipe in terms of $\rho|_{I_\ell}$.
Let ℓ be a prime number and let $\rho: \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\overline{\mathbb{F}}_{\ell})$ be an odd, absolutely irreducible, continuous representation. Then ρ is modular of level $N(\rho)$, weight $k(\rho)$ and character $\epsilon(\rho)$.

$N(\rho)$ (the level) is the Artin conductor away from ℓ.

$k(\rho)$ (the weight) is given by a recipe in terms of $\rho|_{I_{\ell}}$.

$\epsilon(\rho): (\mathbb{Z}/N(\rho)\mathbb{Z})^* \rightarrow \overline{\mathbb{F}}_{\ell}^*$ is given by:

$$\det \circ \rho = \epsilon(\rho)\chi^{k(\rho)-1}.$$
Residual modular Galois representations

A local-global principle for isogenies over number fields

Modular curves and Modular Forms
Residual modular Galois representations
Image of Residual modular Galois representations
Algorithm
Example: projective image S_4 in characteristic 3

Algorithm

Input:
- n positive integer;
- ℓ prime such that $(n, \ell) = 1$;
- k positive integer such that $2 \leq k \leq \ell + 1$;
- a character $\epsilon: (\mathbb{Z}/n\mathbb{Z})^\ast \rightarrow \mathbb{C}^\ast$;
- a morphism of ring $f: T(n, k, \epsilon) \rightarrow F_\ell$;

Output:
- Image of the associated Galois representation ρ_f, up to conjugacy as subgroup of $GL_2(F_\ell)$.

Samuele Anni

Images of modular Galois representations mod ℓ
Algorithm

Input: \(n \) positive integer; \(\ell \) prime such that \((n,\ell) = 1\); \(k \) positive integer such that \(2 \leq k \leq \ell + 1\); a character \(\epsilon : (\mathbb{Z}/n\mathbb{Z})^* \to \mathbb{C}^* \); a morphism of ring \(f : T(n,k,\epsilon) \to F_\ell \);

Output: Image of the associated Galois representation \(\rho_f \), up to conjugacy as subgroup of \(GL_2(F_\ell) \).
Residual modular Galois representations
A local-global principle for isogenies over number fields

Modular curves and Modular Forms
Residual modular Galois representations
Image of Residual modular Galois representations
Algorithm
Example: projective image S_4 in characteristic 3

Algorithm

Input:
- n positive integer;
- ℓ prime such that $(n, \ell) = 1$;
- k positive integer such that $2 \leq k \leq \ell + 1$;
- a character $\epsilon: (\mathbb{Z}/n\mathbb{Z})^* \rightarrow \mathbb{C}^*$;
- a morphism of ring $f: T(n, k, \epsilon) \rightarrow F_\ell$;

Output:
- Image of the associated Galois representation ρ_f, up to conjugacy as subgroup of $\text{GL}_2(F_\ell)$.

Samuele Anni
Images of modular Galois representations mod ℓ
Algorithm

Input:
Algorithm

Input:
- n positive integer;
- ℓ prime such that $(n, \ell) = 1$;
- k positive integer such that $2 \leq k \leq \ell + 1$;
- a character $\epsilon : (\mathbb{Z}/n\mathbb{Z})^* \to \mathbb{C}^*$;
- a morphism of ring $f : \mathcal{T}(n, k, \epsilon) \to \overline{\mathbb{F}_\ell}$;
Algorithm

Input:
- n positive integer;
- ℓ prime such that $(n, \ell) = 1$;
- k positive integer such that $2 \leq k \leq \ell + 1$;
- a character $\epsilon: (\mathbb{Z}/n\mathbb{Z})^* \rightarrow \mathbb{C}^*$;
- a morphism of ring $f: \mathbb{T}(n, k, \epsilon) \rightarrow \overline{\mathbb{F}}_\ell$;

Output:
Algorithm

Input:
- n positive integer;
- ℓ prime such that $(n, \ell) = 1$;
- k positive integer such that $2 \leq k \leq \ell + 1$;
- a character $\epsilon: (\mathbb{Z}/n\mathbb{Z})^* \to \mathbb{C}^*$;
- a morphism of ring $f: \mathbb{T}(n, k, \epsilon) \to \overline{\mathbb{F}}_\ell$;

Output:
Image of the associated Galois representation ρ_f, up to conjugacy as subgroup of $\text{GL}_2(\overline{\mathbb{F}}_\ell)$.
How do we want to construct this algorithm?
How do we want to construct this algorithm?

Iteration “down to top”, i.e. considering all divisors of \(n \) (and all twists).

Determination of the projective image. Determination of the image.
How do we want to construct this algorithm?

Iteration “down to top”, i.e. considering all divisors of \(n \) (and all twists).

Determination of the projective image. Determination of the image.

How many \(T_p \)?
How do we want to construct this algorithm?

Iteration “down to top”, i.e. considering all divisors of n (and all twists).

Determination of the projective image. Determination of the image.

How many T_p?

Bound linear in n (and k): Sturm Bound at level n, which we will denote as $SB(n, k)$ (at the moment the known bound is $\sim \ell^5 n^3$).
Results

We have studied the field of definition of the representation, and of the projective representation: in both cases we can determine such fields computing operators up to $SB(n,k)$.

We have a result about twists of representation: this will speed up the computation of the projective image.

We are studying methods for switching characteristic in the case of "exceptional" projective image, i.e. projective image isomorphic to A_4, S_4, or A_5.

Idea: construct a database in characteristic 2, 3 and 5 to have information in larger characteristic.
Results

We have studied the field of definition of the representation, and of the projective representation:
Results

- We have studied the field of definition of the representation, and of the projective representation: in both cases we can determine such fields computing operators up $SB(n, k)$.

Idea: construct a database in characteristic 2, 3 and 5 to have information in larger characteristic.
Results

- We have studied the field of definition of the representation, and of the projective representation: in both cases we can determine such fields computing operators up $SB(n, k)$.
- We have a result about twists of representation: this will speed up the computation of the projective image.
Results

- We have studied the field of definition of the representation, and of the projective representation: in both cases we can determine such fields computing operators up $SB(n, k)$.

- We have a result about twists of representation: this will speed up the computation of the projective image.

- We are studying methods for switching characteristic in the case of “exceptional” projective image, i.e. projective image isomorphic to A_4, S_4 or A_5. Idea: construct a database in characteristic 2, 3 and 5 to have information in larger characteristic.
Example: projective image S_4 in characteristic 3.

Idea:

A modular representation which has S_4 as projective image in characteristic 3 has "big" projective image, i.e., $\text{PGL}_2(F_3) \simeq S_4$; from mod 3 modular forms with projective image S_4, we want to construct characteristic 0 forms; use these forms to decide about projective image S_4 in characteristic larger than 3.
Example: projective image S_4 in characteristic 3.

Ideas:

- A modular representation which has S_4 as projective image in characteristic 3 has “big” projective image i.e. $PGL_2(\mathbb{F}_3) \cong S_4$.
Example: projective image S_4 in characteristic 3.

Ideas:

- A modular representation which has S_4 as projective image in characteristic 3 has “big” projective image i.e. $\text{PGL}_2(\mathbb{F}_3) \cong S_4$;
- From mod 3 modular forms with projective image S_4, we want to construct characteristic 0 forms;
Example: projective image S_4 in characteristic 3.

Ideas:

- a modular representation which has S_4 as projective image in characteristic 3 has “big” projective image i.e. $\text{PGL}_2(\mathbb{F}_3) \cong S_4$;
- from mod 3 modular forms with projective image S_4, we want to construct characteristic 0 forms;
- use these forms to decide about projective image S_4 in characteristic larger than 3.
Input:

- A positive integer, \((n, 3) = 1 \);
- An integer \(k \in \{2, 3, 4\} \);
- A character \(\epsilon : (\mathbb{Z}/n\mathbb{Z})^* \to \mathbb{C}^* \);
- A morphism of rings \(f : T(n, k, \epsilon) \to F_3 \).
Input:

\begin{itemize}
\item \textbf{Input:} \\
\end{itemize}
Input:

- n positive integer, $(n, 3) = 1$;
- $k \in \{2, 3, 4\}$;
- a character $\epsilon: (\mathbb{Z}/n\mathbb{Z})^* \to \mathbb{C}^*$;
- a morphism of rings $f: \mathbb{T}(n, k, \epsilon) \to \overline{\mathbb{F}}_3$.

Samuele Anni
Suppose the algorithm has certified that ρ_f is absolutely irreducible and that $\mathbb{P}\rho_f \cong S_4$. Suppose also that f is “minimal” with respect to weight, level and twisting.
Suppose the algorithm has certified that ρ_f is absolutely irreducible and that $\mathbb{P}\rho_f \cong S_4$. Suppose also that f is “minimal” with respect to weight, level and twisting. What else do we know?

- Field of definition of the representation: \mathbb{F};
- Field of definition of the projective representation: \mathbb{F}_3;
- Data on the local components;
- Image of the representation: $\rho_f(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) \subseteq \mathbb{F}^* \cdot \text{GL}_2(\mathbb{F}_3)$.
Suppose the algorithm has certified that ρ_f is absolutely irreducible and that $\mathbb{P}\rho_f \cong S_4$. Suppose also that f is “minimal” with respect to weight, level and twisting. What else do we know?

- Field of definition of the representation: \mathbb{F};
- Field of definition of the projective representation: \mathbb{F}_3;
- Data on the local components;
- Image of the representation: $\rho_f(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) \subseteq \mathbb{F}^* \cdot \text{GL}_2(\mathbb{F}_3)$.

Let $\beta : \mathbb{F}^* \cdot \text{GL}_2(\mathbb{F}_3) \to \text{GL}_2(\mathcal{O}_K)$ be a faithful irreducible 2-dimensional representation, where \mathcal{O}_K is the ring of integers of a number field.
Residual modular Galois representations
A local-global principle for isogenies over number fields

Modular curves and Modular Forms
Residual modular Galois representations
Image of Residual modular Galois representations
Algorithm
Example: projective image S_4 in characteristic 3

By Serre’s conjecture there exists f_{β} of weight 1 such that
$\rho_f \sim \beta \circ \rho_f$.

Can we determine the level of f_{β}?
Yes, we can bound it.
Can we determine $f_{\beta}(T_p)$, $f_{\beta}(\langle p \rangle)$ for all p?
Yes for the primes dividing the level and 3
No for the unramified primes! Problem: distinguish elements in $GL_2(F_3)$ using only traces and determinants is not possible.
Solution: check in characteristic 2 and 5.

Images of modular Galois representations mod ℓ

Samuele Anni
Residual modular Galois representations

A local-global principle for isogenies over number fields

Modular curves and Modular Forms

Image of Residual modular Galois representations

Algorithm

Example: projective image S_4 in characteristic 3

\[
\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\rho_f} \mathbb{F}^* \xrightarrow{\beta} \text{GL}_2(\mathbb{F}_3) \xrightarrow{\beta} \text{GL}_2(\mathcal{O}_K)
\]

By Serre’s conjecture there exists f_{β} of weight 1 such that $\rho_{f_{\beta}} \sim \beta \circ \rho_f$.

Can we determine the level of f_{β}?

Yes, we can bound it.

Can we determine $f_{\beta}(T_p)$, $f_{\beta}(\langle p \rangle)$ for all p?

Yes for the primes dividing the level and 3.

No for the unramified primes! Problem: distinguish elements in $\text{GL}_2(\mathbb{F}_3)$ using only traces and determinants is not possible.

Solution: check in characteristic 2 and 5.
Residual modular Galois representations

A local-global principle for isogenies over number fields

Modular curves and Modular Forms

Residual modular Galois representations

Image of Residual modular Galois representations

Algorithm

Example: projective image S_4 in characteristic 3

\[
\begin{array}{ccc}
\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) & \xrightarrow{\rho_f} & \mathbb{F}^* \text{GL}_2(\mathbb{F}_3) & \xrightarrow{\beta} & \text{GL}_2(\mathcal{O}_K) \\
\end{array}
\]

By Serre’s conjecture there exists f_β of weight 1 such that $\rho_{f_\beta} \cong \beta \circ \rho_f$.

Images of modular Galois representations mod ℓ
By Serre’s conjecture there exists f_{β} of weight 1 such that $\rho_{f_{\beta}} \cong \beta \circ \rho_f$.

Can we determine the level of f_{β}?
Residual modular Galois representations

A local-global principle for isogenies over number fields

Modular curves and Modular Forms
Residual modular Galois representations
Image of Residual modular Galois representations
Algorithm
Example: projective image S_4 in characteristic 3

Can we determine the level of f_{β}?

Yes, we can bound it.

By Serre’s conjecture there exists f_{β} of weight 1 such that $\rho_{f_{\beta}} \cong \beta \circ \rho_f$.
By Serre’s conjecture there exists \(f_\beta \) of weight 1 such that \(\rho_{f_\beta} \cong \beta \circ \rho_f \).

Can we determine the level of \(f_\beta \)?

Yes, we can bound it.

Can we determine \(f_\beta(T_p), f_\beta(\langle p \rangle) \) for all \(p \)?

Yes for the primes dividing the level and 3. No for the unramified primes! Problem: distinguish elements in \(\text{GL}_2(F_3) \) using only traces and determinants is not possible. Solution: check in characteristic 2 and 5.
Residual modular Galois representations
A local-global principle for isogenies over number fields

Gal(\overline{\mathbb{Q}} / \mathbb{Q}) \overset{\rho_f}{\longrightarrow} \mathbb{F}^* \text{GL}_2(\mathbb{F}_3) \overset{\beta}{\longrightarrow} \text{GL}_2(\mathcal{O}_K)

By Serre’s conjecture there exists \(f_\beta \) of weight 1 such that \(\rho_{f_\beta} \cong \beta \circ \rho_f \).

Can we determine the level of \(f_\beta \)?
Yes, we can bound it.

Can we determine \(f_\beta(T_p), f_\beta(\langle p \rangle) \) for all \(p \)?
Yes for the primes dividing the level and 3.
By Serre’s conjecture there exists f_{β} of weight 1 such that $\rho_{f_{\beta}} \cong \beta \circ \rho_f$.

Can we determine the level of f_{β}?

Yes, we can bound it.

Can we determine $f_{\beta}(T_p)$, $f_{\beta}(\langle p \rangle)$ for all p?

Yes for the primes dividing the level and 3.

No for the unramified primes! Problem: distinguish elements in $GL_2(\mathbb{F}_3)$ using only traces and determinants is not possible.
Residual modular Galois representations

A local-global principle for isogenies over number fields

Modular curves and Modular Forms

Image of Residual modular Galois representations

Algorithm

Example: projective image S_4 in characteristic 3

\[\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\rho_f} \mathbb{F}^* \text{GL}_2(\mathbb{F}_3) \xrightarrow{\beta} \text{GL}_2(\mathcal{O}_K) \]

By Serre’s conjecture there exists f_β of weight 1 such that $\rho_{f_\beta} \cong \beta \circ \rho_f$.

Can we determine the level of f_β?

Yes, we can bound it.

Can we determine $f_\beta(T_p)$, $f_\beta(\langle p \rangle)$ for all p?

Yes for the primes dividing the level and 3

No for the unramified primes! Problem: distinguish elements in $\text{GL}_2(\mathbb{F}_3)$ using only traces and determinants is not possible.

Solution:

check in characteristic 2 and 5.
Residual modular Galois representations

A local-global principle for isogenies over number fields

Example: projective image S_4 in characteristic 3

$\mathbb{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\rho_f} \mathbb{F}^* \xrightarrow{\beta} \mathbb{GL}_2(\mathbb{F}_3) \xrightarrow{\beta} \mathbb{GL}_2(\mathcal{O}_K) \xrightarrow{\pi} \mathbb{GL}_2(\overline{\mathbb{F}}_2)$
Residual modular Galois representations
A local-global principle for isogenies over number fields

Image of Residual modular Galois representations
Algorithm

Example: projective image S_4 in characteristic 3

\[
\begin{align*}
\rho_f \pi \beta & \quad \rho_f & \quad \rho_f \pi \beta & \quad \rho_f \pi \beta \rho_f (\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) \subseteq \mathbb{F}^* \times \text{GL}_2(\mathbb{F}_2) \\
\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) & \rightarrow & \mathbb{F}^* \times \text{GL}_2(\mathbb{F}_3) & \rightarrow & \text{GL}_2(\mathcal{O}_K) & \rightarrow & \text{GL}_2(\overline{\mathbb{F}}_2) \\
& & & \downarrow & \downarrow & \uparrow \\
& & & & \pi & & \\
& & & & \rho_f \pi \beta & & \\
& & & & \rho_f & & \\
& & & & \rho_f \pi \beta & & \\
& & & & \rho_f & & \\
& & & & \rho_f \pi \beta \rho_f (\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) & \sim & S_3
\end{align*}
\]
There exists a mod 2 modular form $f_{\pi \beta}$ such that $\rho_{f_{\pi \beta}} \cong \pi \circ \beta \circ \rho_f$.
There exists a mod 2 modular form $f_{\pi \beta}$ such that $\rho f_{\pi \beta} \cong \pi \circ \beta \circ \rho_f$.

Can we determine the level of $f_{\pi \beta}$?

Yes, we can bound it.

Can we determine $f_\beta(T_p)$, $f_\beta(\langle p \rangle)$ using $f_{\pi \beta}(T_p)$, $f_{\pi \beta}(\langle p \rangle)$ for all p?

Yes for the primes dividing the level and 3.

For the unramified primes there is still a problem but we have candidates, i.e. a finite list of mod 2 modular forms with prescribed properties.

How can we solve this problem?

For each candidate we have a power series in characteristic 0. All power series are defined over the same ring of integers so we can reduce them modulo 5 and check if the list we obtain does occur as eigenvalue system or not. Claim: only one power series is a modular form.
There exists a mod 2 modular form $f_{\pi\beta}$ such that $\rho_{f_{\pi\beta}} \cong \pi \circ \beta \circ \rho_f$.

Can we determine the level of $f_{\pi\beta}$?

Yes, we can bound it.
There exists a mod 2 modular form $f_{\pi\beta}$ such that $\rho_{f_{\pi\beta}} \cong \pi \circ \beta \circ \rho_f$.

Can we determine the level of $f_{\pi\beta}$?

Yes, we can bound it.

Can we determine $f_\beta(T_p)$, $f_\beta(\langle p \rangle)$ using $f_{\pi\beta}(T_p)$, $f_{\pi\beta}(\langle p \rangle)$ for all p?

Yes for the primes dividing the level and 3. For the unramified primes there is still a problem but we have candidates, i.e. a finite list of mod 2 modular forms with prescribed properties. How can we solve this problem? For each candidate we have a power series in characteristic 0. All power series are defined over the same ring of integers so we can reduce them modulo 5 and check if the list we obtain does occur as eigenvalue system or not. Claim: only one power series is a modular form.
There exists a mod 2 modular form $f_{\pi \beta}$ such that $\rho_{f_{\pi \beta}} \cong \pi \circ \beta \circ \rho_f$.

Can we determine the level of $f_{\pi \beta}$?

Yes, we can bound it.

Can we determine $f_{\beta}(T_p)$, $f_{\beta}(\langle p \rangle)$ using $f_{\pi \beta}(T_p)$, $f_{\pi \beta}(\langle p \rangle)$ for all p?

Yes for the primes dividing the level and 3.
There exists a mod 2 modular form $f_{\pi \beta}$ such that $\rho_{f_{\pi \beta}} \cong \pi \circ \beta \circ \rho_f$.

Can we determine the level of $f_{\pi \beta}$?

Yes, we can bound it.

Can we determine $f_\beta(T_p)$, $f_\beta(\langle p \rangle)$ using $f_{\pi \beta}(T_p)$, $f_{\pi \beta}(\langle p \rangle)$ for all p?

Yes for the primes dividing the level and 3. For the unramified primes there is still a problem but we have candidates i.e. a finite list of mod 2 modular forms with prescribed properties.
There exists a mod 2 modular form $f_{\pi \beta}$ such that $\rho_{f_{\pi \beta}} \cong \pi \circ \beta \circ \rho_f$.

Can we determine the level of $f_{\pi \beta}$?
Yes, we can bound it.

Can we determine $f_\beta(T_p)$, $f_\beta(\langle p \rangle)$ using $f_{\pi \beta}(T_p)$, $f_{\pi \beta}(\langle p \rangle)$ for all p?
Yes for the primes dividing the level and 3. For the unramified primes there is still a problem but we have candidates i.e. a finite list of mod 2 modular forms with prescribed properties.

How can we solve this problem?
For each candidate we have a power series in characteristic 0. All power series are defined over the same ring of integers so we can reduce them modulo 5 and check if the list we obtain does occur as eigenvalue system or not. Claim: only one power series is a modular form.
Residual modular Galois representations

A local-global principle for isogenies over number fields

Preliminaries and introduction to the problem
New results
Finiteness result

Residual modular Galois representations

A local-global principle for isogenies of prime degree over number fields

Preliminaries and introduction to the problem
New results
Finiteness result

Samuele Anni
Definition

Let \(E \) be an elliptic curve defined on a number field \(K \), and let \(\ell \) be a prime number. If \(\mathfrak{p} \) is a prime of \(K \) where \(E \) has good reduction, \(\mathfrak{p} \) not dividing \(\ell \), we say that \(E \) admits an \(\ell \)-isogeny \textbf{locally at} \(\mathfrak{p} \) if the Néron model of \(E \) over the ring of integer of \(K_{\mathfrak{p}} \) admits an \(\ell \)-isogeny.
Definition

Let E be an elliptic curve defined on a number field K, and let ℓ be a prime number. If \mathfrak{p} is a prime of K where E has good reduction, \mathfrak{p} not dividing ℓ, we say that E admits an ℓ-isogeny **locally at** \mathfrak{p} if the Néron model of E over the ring of integer of $K_{\mathfrak{p}}$ admits an ℓ-isogeny.

Question

Let E be an elliptic curve defined over a number field K, and let ℓ be a prime number, if E admits an ℓ-isogeny locally at a set of primes with density one then does E admit an ℓ-isogeny over K?
Theorem (Sutherland)

Let E be an elliptic curve defined over a number field K and let ℓ be a prime number. Assume $\sqrt{\left(\frac{-1}{\ell}\right)} \ell \notin K$, and suppose E/K admits an ℓ-isogeny locally at a set of primes with density one. Then E admits an ℓ-isogeny over a quadratic extension of K. Moreover, if $\ell \equiv 1 \mod 4$ or $\ell < 7$, E admits an ℓ-isogeny defined over K.
Definition

Let K be a number field, let E be an elliptic curve over K and ℓ a prime number, a pair $(\ell, j(E))$ is said to be **exceptional** for K if E/K admits an ℓ-isogeny locally everywhere but not over K.
Definition

Let K be a number field, let E be an elliptic curve over K and ℓ a prime number, a pair $(\ell, j(E))$ is said to be **exceptional** for K if E/K admits an ℓ-isogeny locally everywhere but not over K.

Sutherland proved the following result:
Definition

Let K be a number field, let E be an elliptic curve over K and ℓ a prime number, a pair $(\ell, j(E))$ is said to be **exceptional** for K if E/K admits an ℓ-isogeny locally everywhere but not over K.

Sutherland proved the following result:

Theorem (Sutherland)

The pair $(7, 2268945/128)$ is the only exceptional pair for \mathbb{Q}.
Theorem (Sutherland)

Let E be an elliptic curve defined over a number field K and let ℓ be a prime number. Assume $\sqrt{\left(\frac{-1}{\ell}\right)} \not\in K$, and suppose E/K admits an ℓ-isogeny locally at a set of primes with density one. Then E admits an ℓ-isogeny over a quadratic extension of K. Moreover, if $\ell \equiv 1 \mod 4$ or $\ell < 7$, E admits an ℓ-isogeny defined over K.
Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\) and let
\(G = \rho_{E, \ell}(\text{Gal}(\overline{\mathbb{Q}}/K))\). Then \(G\) is a subgroup of \(\text{GL}_2(\mathbb{F}_\ell)\) such that
\(|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0\) for all \(g \in G\) but
\(|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0\).
Remark

Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\) and let \(G = \rho_{E, \ell}(\text{Gal}(\overline{Q}/K))\). Then \(G\) is a subgroup of \(\text{GL}_2(\mathbb{F}_\ell)\) such that \(|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0\) for all \(g \in G\) but \(|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0\).

Given an elliptic curve \(E\), defined over a number field \(K\), the compatibility between \(\rho_{E, \ell}\) and the Weil pairing on \(E[\ell]\) implies that:
Remark

Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\) and let
\[G = \rho_{E,\ell}(\text{Gal}(\overline{\mathbb{Q}}/K)) . \]
Then \(G\) is a subgroup of \(\text{GL}_2(\mathbb{F}_\ell)\) such that
\[|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0 \text{ for all } g \in G \text{ but } |\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0. \]

Given an elliptic curve \(E\), defined over a number field \(K\), the compatibility between \(\rho_{E,\ell}\) and the Weil pairing on \(E[\ell]\) implies that:
Remark

Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\) and let \(G = \rho_{E,\ell}(\text{Gal}(\overline{Q}/K))\). Then \(G\) is a subgroup of \(\text{GL}_2(\mathbb{F}_\ell)\) such that \(|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0\) for all \(g \in G\) but \(|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0\).

Given an elliptic curve \(E\), defined over a number field \(K\), the compatibility between \(\rho_{E,\ell}\) and the Weil pairing on \(E[\ell]\) implies that:

- \(\zeta_\ell\) is in \(K\) if and only if \(G\) is contained in \(\text{SL}_2(\mathbb{F}_\ell)\);
Remark

Let $(\ell, j(E))$ be an exceptional pair for the number field K and let $G = \rho_{E,\ell}(\text{Gal}(\overline{\mathbb{Q}}/K))$. Then G is a subgroup of $\text{GL}_2(\mathbb{F}_\ell)$ such that $|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0$ for all $g \in G$ but $|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0$.

Given an elliptic curve E, defined over a number field K, the compatibility between $\rho_{E,\ell}$ and the Weil pairing on $E[\ell]$ implies that:

- ζ_ℓ is in K if and only if G is contained in $\text{SL}_2(\mathbb{F}_\ell)$;
- H, the projective image of G, is contained in $\text{SL}_2(\mathbb{F}_\ell)/\{\pm 1\}$ if and only if $\sqrt{(-1)^{\ell}} \ell$ is in K.

Hence, the study of the local-global principle about ℓ-isogenies over an arbitrary number field K depends on $\sqrt{(-1)^{\ell}} \ell$ belonging to K or not.
Lemma (Sutherland)

Let G be a subgroup of $\text{GL}_2(\mathbb{F}_\ell)$ whose image H in $\text{PGL}_2(\mathbb{F}_\ell)$ is not contained in $\text{SL}_2(\mathbb{F}_\ell)/\{\pm 1\}$. Suppose $|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0$ for all $g \in G$ but $|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0$. Then $\ell \equiv 3 \text{ mod } 4$ and the following holds:

1. H is dihedral of order $2n$, where $n > 1$ is an odd divisor of $(\ell-1)/2$;
2. G is properly contained in the normalizer of a split Cartan subgroup;
3. $\mathbb{P}^1(\mathbb{F}_\ell)/G$ contains an orbit of size 2.
Proposition (A.)

Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\), and assume that \(\sqrt{(-1)/\ell} \notin K\). Let \(G = \rho_{E,\ell}(\text{Gal}(\overline{\mathbb{Q}}/K))\) and let \(H\) be its image in \(\text{PGL}_2(\mathbb{F}_\ell)\). Let \(C \subset G\) be the preimage of the maximal cyclic subgroup of \(H\). Then

\[
\det(C) \in (\mathbb{F}_\ell^*)^2.
\]

where \((\mathbb{F}_\ell^*)^2\) denotes the group of squares in \(\mathbb{F}_\ell^*\).
Proposition (A.)

Let $(\ell,j(E))$ be an exceptional pair for the number field K, and assume that $\sqrt{\left(\frac{-1}{\ell}\right)} \ell \notin K$. Let G be $\rho_{E,\ell}(\text{Gal}(\overline{\mathbb{Q}}/K))$ and let H be its image in $\text{PGL}_2(\mathbb{F}_\ell)$. Let $\mathcal{C} \subset G$ be the preimage of the maximal cyclic subgroup of H. Then

$$\det(\mathcal{C}) \in (\mathbb{F}_\ell^*)^2.$$

where $(\mathbb{F}_\ell^*)^2$ denotes the group of squares in \mathbb{F}_ℓ^*.

Proposition (A.)

Let $(\ell,j(E))$ be an exceptional pair for the number field K with $\sqrt{\left(\frac{-1}{\ell}\right)} \ell$ not belonging to K. Then E admits an ℓ-isogeny over $K(\sqrt{-\ell})$ (and actually, two such isogenies).
Main Theorem (A.)

Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\) of degree \(d\) over \(\mathbb{Q}\), such that \(\sqrt{\left(-\frac{1}{\ell}\right)} \ell \not\in K\). Then \(\ell \equiv 3 \text{ mod } 4\) and

\[
7 \leq \ell \leq 6d + 1.
\]
Main Theorem (A.)

Let \((\ell, j(E))\) be an exceptional pair for the number field \(K\) of degree \(d\) over \(\mathbb{Q}\), such that \(\sqrt{\left(-\frac{1}{\ell}\right)} \not\in K\). Then \(\ell \equiv 3 \mod 4\) and

\[7 \leq \ell \leq 6d+1. \]

Remark

This theorem implies the result obtained by Sutherland in the case \(K = \mathbb{Q}\).
Let us assume that $\sqrt{\left(\frac{-1}{\ell}\right) \ell}$ belongs to K.
Let us assume that $\sqrt{\left(\frac{-1}{\ell}\right) \ell}$ belongs to K.

Lemma (A.)

Let G be a subgroup of $\text{GL}_2(\mathbb{F}_\ell)$ whose image H in $\text{PGL}_2(\mathbb{F}_\ell)$ is contained in $\text{SL}_2(\mathbb{F}_\ell)/\{\pm 1\}$. Suppose $|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0$ for all $g \in G$ but $|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0$. Then $\ell \equiv 1 \mod 4$ and one of the followings holds:

1. H is dihedral of order $2n$, where $n \in \mathbb{Z}_{> 1}$ is a divisor of $\ell - 1$;
2. H is isomorphic to one of the following exceptional groups: A_4, S_4 or A_5.
Corollary (A.)

Let G be a subgroup of $\text{GL}_2(\mathbb{F}_\ell)$ whose image H in $\text{PGL}_2(\mathbb{F}_\ell)$ is contained in $\text{SL}_2(\mathbb{F}_\ell)/\{\pm 1\}$. Suppose $|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0$ for all $g \in G$ but $|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0$. If H is dihedral of order $2n$, where $n \in \mathbb{Z}_{>1}$ is a divisor of $\ell-1$, then G is properly contained in the normalizer of a split Cartan subgroup and $\mathbb{P}^1(\mathbb{F}_\ell)/G$ contains an orbit of size 2.

Corollary (A.)

Let G be a subgroup of $\text{GL}_2(\mathbb{F}_\ell)$ whose image H in $\text{PGL}_2(\mathbb{F}_\ell)$ is contained in $\text{SL}_2(\mathbb{F}_\ell)/\{\pm 1\}$. Suppose $|\mathbb{P}^1(\mathbb{F}_\ell)^g| > 0$ for all $g \in G$ but $|\mathbb{P}^1(\mathbb{F}_\ell)^G| = 0$. Then:

- if H is isomorphic to A_4 then $\ell \equiv 1 \text{ mod } 12$;
- if H is isomorphic to S_4 then $\ell \equiv 1 \text{ mod } 24$;
- if H is isomorphic to A_5 then $\ell \equiv 1 \text{ mod } 60$.
Proposition (A.)

Let E be an elliptic curve defined over a number field K of degree d over \mathbb{Q} and let ℓ be a prime number. Let us suppose $\sqrt{\left(\frac{-1}{\ell}\right)} \ell \in K$. Suppose E/K admits an ℓ-isogeny locally at a set of primes with density one. Then:

1. If $\ell \equiv 3 \mod 4$ the elliptic curve E admits a global ℓ-isogeny over K;
2. If $\ell \equiv 1 \mod 4$ the elliptic curve E admits an ℓ-isogeny over L, finite extension of K, which can ramify only at primes dividing the conductor of E and ℓ. Moreover, if $\ell \equiv -1 \mod 3$ or if $\ell \geq 60d+1$, then E admits an ℓ-isogeny over a quadratic extension L of K.
Question

Let K be a number field and let ℓ be a prime number, how many exceptional pairs $(\ell, j(E))$ do exist over K?
Question

Let K be a number field and let ℓ be a prime number, how many exceptional pairs $(\ell, j(E))$ do exist over K?

Proposition (A.)

Let $(\ell, j(E))$ be an exceptional pair for the number field K of degree d over \mathbb{Q} and discriminant Δ. Then

$$\ell \leq \max \{\Delta, 6d+1\}.$$
Proposition (A.)

Given a number field K:

If $\ell = 2, 3$ then there exists no exceptional pair; there exist infinitely many exceptional pairs $(5, j(E))$ for the number field K if and only if $\sqrt{5}$ belongs to K; if $\ell > 7$, then the number of exceptional pairs $(\ell, j(E))$ is finite.
PROPOSITION (A.)

Given a number field K:

- if $\ell = 2, 3$ then there exists no exceptional pair;
Proposition (A.)

Given a number field K:

- if $\ell = 2, 3$ then there exists no exceptional pair;
- there exist infinitely many exceptional pairs $(5, j(E))$ for the number field K if and only if $\sqrt{5}$ belongs to K;
Proposition (A.)

Given a number field K:

- if $\ell = 2, 3$ then there exists no exceptional pair;
- there exist infinitely many exceptional pairs $(5, j(E))$ for the number field K if and only if $\sqrt{5}$ belongs to K;
- if $\ell > 7$, then the number of exceptional pairs $(\ell, j(E))$ is finite.
The local-global principle for 7-isogenies leads us to a dichotomy between a finite and an infinite number of counterexamples according to the rank of a specific elliptic curve that we call the Elkies-Sutherland curve:
The local-global principle for 7-isogenies leads us to a dichotomy between a finite and an infinite number of counterexamples according to the rank of a specific elliptic curve that we call the Elkies-Sutherland curve:

Proposition (A.)

If \(\ell = 7 \) then the number of exceptional pairs \((7, j(E))\) for a number field \(K\), is finite or infinite, depending on the rank of the elliptic curve

\[
E' : y^2 = x^3 - 1715x + 33614
\]

being respectively 0 or positive.
Further Directions

- Generalization for simple abelian varieties of dimension d over \mathbb{Q} which are principally polarized i.e. study of the subgroups of $\mathbb{P} \, \text{GSp}_d(\mathbb{F}_\ell)$...
- Generalization for abelian varieties of GL_2-type;
- Generalization for isogenies of prime power degree;
- Generalization for isogenies of degree given by products of primes;
- ...
Images of modular Galois representations mod ℓ

Samuele Anni

Universiteit Leiden - Université Bordeaux 1

Leiden, ALGANT meeting;
23rd February 2013

Thanks!