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Abstract - A model for root growth of crops through a free boundary problem is studied.

 The resultant effects from differences in nutrient availability and transport between the root surface and
the rhizosphere produced by the a active absorption  type Michaelis-Menten for low concentrations are
studied. The model equations are solved by the mass balance integral method and the numerical solution is
used to compute growth of root radius.
 Examples of concentration at the root-soil interface curves as a function of root radius and root radius
as a function of time are plotted. The parameters which are varied are the root absorption power, flux velocity
at the root surface, efflux, rhizosphere soil solution concentration, diffusion coefficient, and buffer power.

INTRODUCTION
 
 One of the methods for studying the nutrient uptake by plant roots, which can be a satisfactory method
of modelling the plant-root system is by use of the partial differential equation for convective and diffusive
flow to a root [1,2,3,4].
 In two recent papers [5,6] a method for compute the root growth through a free boundary problem has
been proposed. In these papers, the root soil interface s(t) (the root radius) as a function of time and the
interface concentration C(s) as a function of the interface position s(t) are computed by the quasi-stationnary
method [7]. The goal of the present paper is to compute the interface position s(t) as a function of t and the
interface concentration C(s(t),t) as a function of s(t) and t by application of the mass balance integral method
(similar to the heat balance integral method [8,9]).

PHYSICAL MODEL AND GOVERNING EQUATIONS

 Because of the rather complicated scenario of the plant-root system, as a first step toward achieving
some understanding of the physical and chemical processes involved, and idealized one-dimenssional
diffusion-convection model was chosen for this study. It is based on the following assumptions [3,5,6] :
 -  A vertical cylindrical root summersed in a porous homogeneous and isotropic medium (the soil),
 -  Moisture conditions maintained at a steady state,
 -  Nutrient uptake occurs at the root surface of the absorption zone,
 -  The rate of uptake can be described by a Michaelis Menten type equation,
 - The nutrient transport occurs via convection and diffusion in the radial direction only (the latter
 takes place in soil solution phase only).  Vertical flow in the soil is not consider,
 - The rate of influx at infinite concentration (J ) and the Michaelis Menten constant (K ) are   m m



 independent of the velocity of soil water at the root (v ),o
 -  The coefficient diffusion (D) is independent of the flux,
 - D and the buffer power b  b   , where C is the total diffusable ion concentration and C  is theŠ œ dC

dC6
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 ion concentration in soil solution  are independent of concentration,‹
 - The root system parameters are not changed by root age the root absorption power k   Š œ œJ

K
m
m

 constant‹
 - The convective velocity of water at root surface is not affected by nutrient concentration,
 -  Production or depletion of nutrient by microbial or other activity is null,
 - All parameters D, b, k are independent of temperature, in the temperature range normally
 encountered in root growth,
 -  The net uptake of nutrient is totally available for growth,
 -  Root hairs do not affect the nutrient uptake.

 The governing equations for mass and diffusive transport of nutrient to the root [3] as well as the
governing equations for root growth in the root-soil interface are given in the following free boundary
problem [10,11,12] (in cylindrical coordinates) by:
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r is the position coordinate, t the time, T is the time for which there exists solution, i) is the Cushman
equation, which is a simple application of the principle of conservation of mass (in soil) under steady
moisture conditions with the nutrient flux consisting of two components (diffusive and convective) [3], ii) and
iii) are the initial and boundary conditions respectively, iv) and v) are the interface conditions representing the
mass nutrient balance, iv) expresses the equality of the rate of net mass absorption of the unique ion
considered in the active kinetics (right hand side) and the incoming total mass and diffusive flux (left hand
side), v) states the same balance in terms of the free boundary velocity, since  a C (s(t),t) s (t) is again the rate6

†

of the mass absorption of the ion [11,13]  and vi) is the initial condition for the free boundary s(t) (interface
root-soil or root radius). s (t)   is the interface velocity, a is a stoichiometric coefficient, E is a constant† œ ds(t)

dt
efflux, R is the rhizosphere radius, C  is the soil solution concentration on the rhizosphere radius, and s  is_ o
the initial radius.  The parameter  is given by%
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F(r) is the initial concentration profile (given by the equation (15) below).
 From now on, we shall denote C   by  C for convewnience in the notation.6

 The two free boundary conditions (1-iv) can be written by:
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where functions g and f are given by:
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which satisfy the following properties:

  g(C)   0    C     C  C       ' œ $ $ œÍ ( #( # ( # ( # ( (
m m

J (J E) d J (J E) d
2 k 2 k

m m m m
2 2$ $

          (6)

  f(C)  0           C  C       (7) ' Í ' œp
E  J E
k 1  
#

(

È& ‘m
E

Jm

where:   ,       $2 k
vœ

o

  d  [ J (J E)] 4 J Eœ ( # ( (È m m m2 2 2$ $

 To solve (1) (that is, to compute C  C(r,t) (in particular, C  C(s(t),t) ) and the free boundaryœ œ
interface r  s(t) a priori unknown) we apply the mass balance integral method [8,9] to the present case forœ
root growth. The solution is found integring the partial differential equation (1-i) in r on the domain (s(t),R).
Thus:
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and we propose:
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which depend on the parameters of the system and satisfy the initial and boundary conditions 1-ii) and 1-iii),
that is:
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 Replacing (11) and (12) in Eq. (8), after some elementary manipulations, the problem (1) reduces to:
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replacing (9) in Eq. (13), after some elementary manipulations we obtain the following  system of two
coupled ordinary differential equations (see Appendix) (valid for the cases   1, 2):% Á
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Remark 1 : The initial profile concentration (r) given by the Eq. (15) above has been computed by the quasi-F
stationary method [4] and it is determinated by the system, similarly to the Cushman s prediction [4].w
Remark 2 : For the particular cases   1 and 2, we can obtain a similar system to (14) of two ordinary differential% œ
equations.
Remark 3  : For the general rank of concentration C we can obtain a similar system to (14) of two ordinary
differential equations.

 The solution of system (14) is computed numerically by the Runge-Kutta method for a system of ordinary
differential equations. The following figures represents results for the interface concentration C(s(t),t) vs. s and the
interface position s(t) vs. t respectively as a function of the dimensionless parameter   .$2 k
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CONCLUSIONS

 We conclude from the model presented above that the free boundary s  s(t) increases when absorptionœ
power k increses (Fig. 2) (i.e, the dimensionless parameter k/v  increases with v   Const.) or when the soilo o œ
solution concentration C  increases (Fig. 6). Moreover, s  s(t) decreases when the efflux E increases (Fig. 8)._ œ
Likewise, s s(t) decreases when the buffer power b (Fig. 12) or the diffusion coefficient D (Fig.10) increases,œ
although this effect is meaningless for high values (e.g. 10) of the dimensionless parameter k/v . Moreover, s o œ
s(t) increases when the flux velocity at the root surface v  increases (Fig. 4) (i.e, the parameter k/v  decreases witho o
k Const.).œ
 The behavior of interface concentration C(s(t),t) as a function of k,v ,C ,E,D,and b (Figures 1,3,5,7,9,11) iso _

quite similar to results obtained by the quasi-stationary method applied to the same model [5].
 From the other hand, by comparison of the results obtained in [5] by the quasi-stationary method and in this
paper by the balance integral method we can conclude that : first, the qualitative behavior of the results is quite
similar for both methods, and secondly the balance integral method give us a more detailed theoretical information,
for example the variation of  s(t) vs. t with respect to the parameter  v  is negligible for the quasi-stationary methodo
[5] (See Fig. 4).
 Thus, we can remark that the present model gives us a qualitative approach to root growth under the
absorption of only one nutrient, with natural limitations in the real situation. Moreover, these conclusions are useful
to outline more complex models for nutrient transport and root growth.
 Finally, we remark that the present formulation is also valid for the any rank of concentrations with
appropriate functions g and f.
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APPENDIX

 Replacing (9) in Eq.(13), after some manipulations, we obtain:
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Similarly, we obtain:
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 Finally, replacing (A1) and (A2) in Eq. (13), after elementary manipulations, we obtain the
system (14).
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NOMENCLATURE



r: Position (radius) coordinate (cm)
t: Time (s)        
J : Rate of influx at infinite concentration (mol/s-cm     m

#Ñ
K  Michaelis Menten constant      m: Ð796Î-7 Ñ$

k: Absorption power of root      Ð-7Î=Ñ
v : Velocity of flux solution at root surface    o Ð-7Î=Ñ
D: Effective diffusion coefficient      Ð-7 Î=Ñ#

C: Total diffusable ion concentration     Ð796Î-7 Ñ$

C : Soil solution concentration        l Ð796Î-7 Ñ$

C(s(t),t):Soil solution concentration at root-soil interface      Ð796Î-7 Ñ$

F(r): Initial concentration profile      Ð796Î-7 Ñ$

C : Constant rhizosphere soil solution concentration    _
$Ð796Î-7 Ñ

E: Constant efflux Ð796Î= ( -7 Ñ#

R: Rhizosphere radius Ð-7Ñ
s : Initial radius       o Ð-7Ñ
s(t): Instantaneous root radius     
s (t): Instantaneous velosity of root-soil interface          †

b: Bufffer power      Ð.37/8=3986/==Ñ
a: Stoichiometric coefficient    
% P+<+7/>/< Ð.37/8=3986/==Ñ


