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The root surface as an absorption mechanism and its growth is studied, and a
growth absorption model is proposed, i.e., the free boundary MichaelisMenten
model. Differencesin nutrient availability and transport between the root surface and
the rhizosphere are studied through the mechanism of absorption which manifests
itself in the limit expression of Michaelis-Menten kinetics for low concentrations. The
resultant equations are analytically solved by the quasi-stationary method with two
interface boundary conditions and boundary and initial conditions. The solution is
used to compute growth of root radius. Several examples of concentration
distribution curves in soil and interface root-soil as a function of root radius are
plotted. The parameters which are varied are the root absorption power, flux
velocity, transpiration rate, rhizosphere soil solution concentration, diffusion
coefficient, and buffer power.

Many methods exist for studying the mechanism involved in nutrient uptake. One of
the most promising methods is the mathematical model, which can be a satisfactory
method of modelling the plant-root system by use of the partial differential equation for
convective and diffusive flow to a root (Claassen and Barber, 1966; Nye and Marriot,
1969; Cushmann, 1979, 1980, 1982). In general, these models have not considered
computing root growth, but rather they have assumed young roots to be growing at
exponential rates (Claassen and Barber, 1966; Cushmann, 1980, 1982). In the past, various
devices and models have been proposed and analyzed with the purpose of interpreting
growing process as a free boundary problem for the heat-diffusion equation [Lame and
Clayperon, 1831; Stefan, 1889; Cardaw and Jaeger, 1959; Crank, 1975; Tarzia, 1988). In
this article we compute the free boundary (the root-soil interface) a priori unknown
through the quasi-stationary method (Stefan 1889; Carslaw and Jaeger, 1959). We obtain
an analytical solution for the nutrient interface concentration and the interface position (the
free boundary).

ANALY SIS ( THE FREE BOUNDARY MODEL)

Before developing the present model for the nutrient flow to a root, we make several
assumptions, which are the following:



The porous medium is homogeneous and isotropic,

Moisture conditions are maintained at a steady state,

Nutrient uptake occurs at the root surface of the absorption zone,

The roots are smooth cylinders,

The rate of uptake can be described by a Michaelis-Menten type equation,
The nutrient transport occurs via convection and diffusion in the radial
direction only (the latter takes place in soil solution phase only),

The rate of influx at infinite concentration (J,) and the Michaelis Menten
constant (K,,,) are independent of the velocity of soil water at the root (v,),
and the diffusion coefficient (D) isindependent of the flux,

D and the buffer power b ( b = g—gl where C isthe total diffusableion and C,

istheion concentration in soil soluti on) are independent of concentration,

The root system parameters are not changed by root age (k = ri_n; = constant) ,

The velocity of water is not affected by nutrient concentration,

Production or depletion of nutrient by microbial or other activity isnull,

All parameters D,b,k are independent of temperature, in the temperature range

normally encountered in root growth,

The net uptake of nutrient is totally available for growth,

Root hairs do not affect nutrient uptake.

With the above assumptions, the partial differential equation for mass and diffusive

transport of nutrient to the root (Cushmann, 1979, 1980) is given (in cylindrical

coordinates) by:

DCr+[D + %3] & = ¢ )

r

where: C = (C istheion concentration in soil solution, C, = %—f, Chk = %Q—rgc,
C = %—f, r the position coordinate, t the time, D isthe effective
diffusion coefficient; v, the velocity of flux solution at the root

surface; b the buffer power, and 5 the initial radius.

Taking into account the idea of the model used for the shrinking core problem for
noncatalytic gas-solid reactions (Wen, 1968; Tarzia and Villa, 1990), we propose the
following free boundary problem for root growth (An extensive bibliography for moving
and free boundary problems for the heat-diffusion equation is given in Tarzia, 1988:

) DCy+Days = C, sty <r<R, t >0,

i)  C(r,0)=o(n , s <r<R
i) CRH=C. >0 , t>0

2
ivV) DbC(s)) + Vo Cs®.) = S8y — E = aCEs.h s(t)
v) 0)=s , 0<s<R

where: 1) isthe Cushman equation [4,5], ii) and iii) are the initial and boundary
conditions respectively, iv) are the interface conditions representing
the mass nutrient balance, and v) istheinitial radius.



Function s(t) is the interface position (root radius), 5(t) = % the
interfase velocity, ais a stoichiometric coefficient, E is a constant

eflux, k is the absorption power of root, R is the rhizosphere radius, and
=1+ € =32 > 0.9(r) istheinitial concentration profile ( given
by the equation (14) below).

A schematic diagram of free boundary problemisgivenin Figure 1.
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We notice that conditions (2-iv) transform the initial problem of solving the linear
Cushman equation into a problem which is non linear.

Assuming low concentrations, the uptake nutrient given by Michaglis-Menten
expression reduces to:

L ~ KOs -

Jm

Thus, (2) reduces to the following free boundary problem:

i)

i)
iii)
iv)
v)

DCr + Dao & = G : sty <r<R, t >0,

C(r,0) = @(n : $<r<R,

C(Rt) = Cy , t > 0, (2-LC)
Db C(s(t),t) + vo C(s(t),t) = k C(s(t)t) — E = aC(s(t),t) 5(t)
S0) = s : 0<s <R

A method to solve (2-LC) (that is, compute C=C(r,t), C=C(s(t),t), the free boundary
interfacer = s(t) apriori unknown) is the quasi-stationary method (Stefan, 1889; Carslaw
and Jaeger, 1959; Tarzia, 1984). This method assumes that the soil solution concentration
is that corresponding to the stationary case in the interval (s(t),R). We thus solve the

equation:

Cr + ap==0 , s)y<r<R, t >0 4)

with the conditions (2-LC:ii,iii,iv,v) which are called the quasi-stationary method for low
concentrations (QSMLC).



The two free boundary conditions (2-LC:iv) can be written by:

Ci(s(t),t) = 9(C(s().1) ,  t>0 (5
s(t) = f(C(s(h).1) ,  t>0 (6)
where functions g and f are given by:
9C) = 55 [k = vo)C — E| (7)
(0 = 3 [k- ¢l (8)
which satisfy the following properties:
f(C)>O<:>C>Cp:E 9)
gC) >0 & C > Cy = ﬁ (Cm > Cp) (10)
The solution of (QSMLC) problem is given by (see appendix A.):
c(ry) = B — U ., s)<r<R,t>0 (11)
where:
o) = [g5] et (12)
o T B [W - ?}
Bt) = Co + R (13)
() = C, — [(k — vo)C — E] 1 _ 1 14
(r) %+(kfvo)[%*%} [I’6 R‘] ( )
and s(t) is the unique solution of the following Cauchy problem (see Appendix B.):
() = F(s(b) : t>20 (15)
s(0) = s € (OR)
with:
FS = £[1 — az H(9) (16)
HE = Fred . GE=sl - 3] (17)
=i >0 L=t >0, o= E=2 >0 (19

Therefore, we obtain, after some elementary manipulations, that the interface
concentration is given by the following expression:

CEtY) = r&y (= C(s() L t>0 (19)



that is, the interface concentration does not depend explicitely on variablet.

The solution of Cauchy problem is computed numerically by the Runge-Kutta method
for ordinary differential equations. Figures 2a, 2b, 2c, 2d, 2e, 2f and 3a, 3b, 3c, 3d
represent results for the interface concentration C(s(t),t) vs. s and the interface position s(t)

vs. t respectively as afunction of the dimensionless parameter k/v,.
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soil solution concentration. f) Interface concentration versus root radius as a function of constant efflux.
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FiG. 3. a) Root radius versus time as a function of root absorption power. b} Root radius versus time as a
function of constant rhizosphere soil solution concentration. ¢) Root radius versus time as a function of constant
efftux. d) Root radius versus time as a function of root absorption power and flux solution velocity at root

surface.

From the results of figs 2a.,2b.,2c. and 2d. we deduce that if the parameter k/v, is
small (e.g.: 1.5,2) accumulation of nutrient is produced in the interface root-soil, then there
is counterdiffusion and the root growth is low. On the other hand, for large values of k/v
(e.g.: 10) the root growth isfast and the counterdiffusion is null. The limit value of k/v,
which produces the counterdiffusion effect depends on the remaining parameters.

From the results of Fig.2e.,, it follows that if the nutrient concentration C,, increases
or klvy is large then the counterdiffusion is null and the growth is faster. On the other
hand, as shown in the fig.2f. if E decreases or k/v, islarge, then the counterdiffusion is null
and the root growth is faster.

Some of the above theoretical results have been observed from an experimental point
of view (Barley, 1970; Nye and Tinker, 1977).

Let v be the parameter defined by:

_ E _
7T kvt ( =

We can prove that (see Appendix C):

< 1 implies that C(s(t),t) has a minimun value

because the absorption power k islarge with

H o E
) 7= wowes



respect to v, and thereis no counterdiffusion.
i) v = g = 1 impliesthat C(s(t),t) isconstant. ~ (20)

i) ~ = m > 1 implies that C(s(t),t) has a maximun
value because k is small and the root can not

absorb al the arriving nutrient and thereisa
counterdiffusion effect.

These results agree with Cushmann' conclusions (Cushmann, 1979).
CONCLUSIONS

We conclude from the model presented above that:

s = 9(t) increases when parameter k or C,, increases (Figures 3a, 3b).

s = g(t) decreases when parameter E increases (Figure 3c).

s = 9(t) increases when parameter (k/v,) increases and, k and v, are
large (Figure 3d).

S = 9(t) does not vary in function of the parametersv, b and D because we did not
have variations in the corresponding diagrams in a wide range of order of magnitude (1 to
10° for each).

§ = §(t) decreases when parameter ~ increases, because from (15)-(18) we have for
§(t) the following representation in function of the parameter ~:

(k—vg) GO+

_ k

This conclusion agrees with the first three conclusions.

Finally, we can remark that the model presented in this paper gives us a qualitative
approach (through a mathematical model) to root growth under the action of only one
nutrient, with natural limitationsin the real situation.

Moreover, these conclusions are useful for calibrating numerical models of the more
complex nutrient transport and growth problems or they may be used to isolate the effects
of the various parameters in the present model.

APPENDIX

Part A
The general solution of the second order ordinary differential equation (4) is given by:

cnN=0—- & (A1)

where o« and 3 are arbitrary constants.

Because the partial differential equation (4) should be solved in the variable interval r €
(s(t),R), the coefficients o« and 3 must depend on the time t, that is, (12) and (13). After
some elementary manipulations we deduce that o(t), G(t) and s(t) are given by (12), (13)
and (15) respectively.



Part B
From (16) we obtain that [F(s) = &1

F9=— 5 HE= - 2 (e~ o) g agr (B1)
that is:
FO < 2 |ay—an| Max(Le) (B2)
because:
G =1-(I+) [E]°, GO =1, GR) = — ¢
(B3)
G = - LLLest <0, |G()| < Max(Le).

From (B2), F is a bounded function and therefore, the Cauchy problem (15) has a unique
solution.

Part C

From (17) and (19) [C(s) - %] we obtain that (Case aq # ay):

' o Co H( Cy (ag — ay) G(9)

C@E = - HEP [1+a12e(s)}21[H(s)12 (CD)
and:

C) =0 GO =0 & s=R) = {154% : (C2)

From (C2) we can remark that the interface concentration has an extremevalueat s = R,.
After some elementary manipulations we obtain:

1
" _ Chrla—aj))e[l+ec __E
C'(Ro) = R[(lfal GR)) HR)P da; [1 - k=w)Cx (€3)
where
1
d = Cooc[ltd > 0 (C4)

RI(1 + a1 G(Ro)) H(Ro)]”

and then we conclude (20).

NOMENCLATURE AND UNITS
r: Position (radius) coordinate [CM]

t: Time [SEC]



Jn:  Rateof influx at infinite concentration [ ok |

Km  Michaelis Menten constant [ %55 |

k: Absorption power of root [ ]

Vo:  Velocity of flux solution at root surface [ ]

D:  Effectivediffusion coefficient B3

C: Total diffusable ion concentration [ ¥O% |

C:  Soil solution concentration [ %05 |

C(s(t),t):Soil solution concentration at root-soil interface [ ¥O% |

®(r): Initial concentration profile [ '\3% ]

C.:  Constant rhizosphere soil solution concentration [ ¥O% |

S! Initial radius [CM]
Constant efflux [ et |

s(t):  Instantaneous root radius [CM]

s(t):  Instantaneous velosity of root-soil interface [ 2 ]

R: Rhizosphere radius [CM]

b: Bufffer power DIMENSIONLESS

a Stoichiometric coefficient DIMENSIONLESS

a1, [ o ]

Quo, €, (3,7 DIMENSIONLESS
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