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ABSTRACT

The root surface as an absorption mechanism is briefly reviewed
and various absorption models are discussed, e.g., the Koshland ki-
netic and Michaelis—Menten models.

Differences in nutrient availability and transport between the root
rhizosphere and bulk soil matrix are examined. The differences man-
ifest thémselves in the diffusion coefficients, buffering powers, soil
mechanical structure, and nutrient solubility and production. The
differences in nutrient transport properties between the rhizosphere
and bulk soil matrix are shown to give rise to two coupled partial
differential equations. These equations are analytically solved for four
sets of boundary conditions. The solutions are used to compute total
nutrient uptake by a growing root.

Additional Index Words: coupled equations, root absorption, ana-
lytical solution.
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THE FLow of nutrients to roots is generally modeled
on one of two scales of motion. That is, the root
system may be modeled on the macroscopic level in
which flow to the bulk root system is studied or, al-
ternatively, on a smaller scale of motion, flow of nu-
trient to only a single root is examined. In this article
we will take the latter approach.

In general, on the root scale of motion the ion up-
take rate increases as the external ion concentration
increases (see, for example, Fried and Shapiro, 1961).
The increase, however, may be in a pseudosaturation
fashion (Fig. 1). More often, however, the velocity
of absorption vs. concentration plot is just a two-step
curve (Nye and Tinker, 1977). In a review article
Hodges (1974) proposed an interesting single carrier
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model based on the cooperative enzyme Kkinetics of
Koshland (1970) to account for the following three
observations: (i) anions are actively pumped inward
across the plasmalemma and cations‘gr—e\acrivel\y\e&
uded; (ii) the influx of cations and anions exhibit ki- ™
netics of the pseudosaturation type discussed above;
and (iit) absorption is selective -and this- selectivity
changes with increasing external ion concentration.
Unfortunately, Hodges’ model is fairly complex and
it does not admit a simple mathematical interpretation.
Alternatively, it is possible to employ the simpler
Michaelis—Menten reaction kinetics to describe the
root’s absorption capabilities. The Michaelis—Menten
kinetic approach has the advantage of being repre-

sented by a simple mathematical expression:
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where J.,, is the maximum influx, Km’ is the value

of the concentration at which J/ = J.../2, J/ is the
influx of the j™ species (Epstein and Hagen, 1952),
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Fig. 1—Velocity of ion influx into roots as a function of external ion
concentration (after Hodges, 1974).
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E’ is the efflux (considered to be constant), and C’
is the j™ species concentration in liquid phase.

Prior to the nutrients being positionally available
at the root surface for absorption, they in general are
transported to the root through the root rhizosphere.
The root. rhizosphere is the region immediately next
to the root surface extending out to a distance of about
4 mm (Hiltner,1904) from the root surface. The root
rhizosphere consists of five overlapping categories of
compounds (Rovira et al., 1979):

1. Exudates—nonmetabolically released com-
pounds of low molecular weight which leak from
cells in the soil by either intercellular spaces or
through epidermal walls.

2. Secretions—compounds of both low and high
molecular weight mucilages which are released
as a result of metabolic processes.

3. Plant mucilages—there are basically four types:
(i) root cap mucilage, (ii) hydrolysates of the
polysaccharide of the primary cell wall between
epidermal cells and sloughed root cap cells, (iii)
mucilage secreted by the epidermal cells which
still only have primary walls (including mucilage
from root hairs), and (iv) mucilage produced by
bacterial degradation of the outer-lamella pri-
mary cell walls of old, dead epidermal cells.

4. Mucigel—the gelatinous material at the root sur-
face grown in normal nonsterile soils (including
natural and modified plant mucilages, bacterial
cells, and their metabolic products as well as
colloidal, mineral, and organic matter from the

soil). e T

5. Lysates—compounds released from autolysis of
older epidermal cells when the plasmalemma
fails.

It is interesting to consider the contact the root
makes with the soil matrix. In general, the outer ep-
idermal surface of a young root is covered with a
mucilage and hence not in direct contact with the soil
(Oades, 1978). The mucilage combines with the soil
colloids and organic matter to form a mucigel. Both
water and ions are able to diffuse through this mucigel
(Greenland, 1979). Moreover, this author believes that
convective flux of water also exists in the mucigel.
Evidence supporting this conjecture is that convection
of water in clay pastes can take place (see, for ex-
ample, Mokady and Low, 1968; Banin and Low,
1971).

The pectin component of the mucigel readily binds
cations, and hence before the Casparian band on the
endodermal cell is formed, it may retard some heavy
metal cations from entering young roots (Barlow,
1975).

Kepert et al. (1979) have suggested that there are
“three mechanisms by which availability of phosphates
is affected in the rhizosphere: (i) release of phosphate
from insoluble phosphates (Ca, Al, Fe) may be in-
creased by the formation of soluble complexes be-
tween metal ions and metabolites; (ii) organic acids
found in root exudates capable of forming adsorption
complexes (e.g., chelates) compete for phosphate ad-
sorbed on kaolinite and aluminum oxides; and (iii)
when cation absorption into the root exceeds anion
absorption, the rhizosphere pH falls, and similarly

st
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hydration of CO, to carbonic acid and release of cell-
ular organic acids may alter the pH.

Root hairs in the rhizosphere make nutrients with
small diffusion coefficients more accessible to the
plant. However, an even larger effect may be induced
by mycorrhizal fungi (see, for example, Owusu-Ben-
noah and Wild, 1979). Endotrophic and ectotrophic
mycorrhiza hyphae extend for distances much larger
than those of root hairs. It is not true that microor-
ganisms always have a positive effect on ion uptake,
however (Hale and Moore, 1979).

For the longer growing periods or for the more
mobile nutrients, it is possible for ions to be trans-
ported to the rhizosphere from the external soil ma-
trix. There are five basic dynamic mechanisms which
control the flow of nutrients outside the root rhizo-
sphere (Cushman, 1981): (i) solution phase diffusion;
(1) surface phase diffusion;(iii) convection; (iv) me-
chanical dispersion; and (v) solid-liquid exchange
phenomena. These mechanisms also exist in the rhizo-
sphere. However, one should add to this list a sixth
mechanism in the rhizosphere: (vi) microbial and other
induced solute changes (for example, as we’ve already
mentioned, the three factors of Kepert et al., 1979).

STATEMENT OF THE TRANSPORT PROBLEM

What I would like to do now is write down a tract-
ible mathematical representation of nutrient flow to
the root both inside and outside the root rhizosphere.

Consider Fig. 2, which is a simplified representation
of a root surrounded by its rhizosphere which-in-turn—
is surrounded by the undisturbed soil matrix. We make
the simplifying assumptions that in Region I the soil

-is isotropic and homogeneous while in Region II we

also have isotropy and homogeneity. However, we
do not stipulate that Regions I and II combined form
a_homogeneous region (e.g., Region I may have a
higher bulk density than Region II, or Region I may
contain gels, whereas Region II will not). So that the
flow problem may be represented one dimensionally,
we assume the root is cylindrical and the concentra-
tion gradients along the root axis are small compared
with the radial gradients. Moreover, we will assume
constant moisture conditions, Darcy velocity (as can
be maintained in a laboratory study), and effective

Fig. 2—A simplified representation of the root, root rhizosphere, and
external sofl matrix. The parameters r,, r,, and r, are, respectively,
the root radius, rhizosphere radius, and external radius of influence
of the root.
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diffusion coefficient. We also have the ions moving on
a concentration gradient as a first approximation to
the true free energy gradient. With these assumptions,
the radial flux (J) of a given species in region i is given
by (Nye and Marriott, 1969):
’ J? = b DOBC /or} + vCP, [2]
where b is the buffer power (assumed constant), D
is the effective diffusion coefficient (Cushman, 1981),
C, is the solution phase concéntration, and v is the
transpiration-induced convective velocity of the water.

Using the assumptions of Cushman (1980a) we may
derive the following equation for flow in the rhizosphere:

P 14 »dCE vy a
——at— = ;5 rD( T + b(nocl + Zzl—),
t>0,r,<r<mn, [3]

where « is the mass of solute in soil solution produced
or depleted per unit time per unit volume in the rhi-
zosphere, v, and r, are, respectively, the velocity of
water at the root surface and the root radius, and r,
is the radius of the outer edge of the rhizosphere.

If we assume there is negligible production or de-
pletion of nutrient outside the rhizosphere, then we
have (Cushman, 1979):

P _13( 1adC Yolo o
at ror or »® ’
t>0,n<r<mr, ’ 4]

-~ wherer, is some-outer radius-ofinfluence-of the root. -

We thus have two equations coupled by boundary
conditions which must be solved simultaneously sub-
ject to appropriate initial conditions. The appropriate
boundary condition at the root surface is found by
setting Eq. [1] equal to Eq. [2] at r = r, to give:
act? ket

+  _ i
Vel = e~ B

t>0,r=r, [5]

where k = Jmax/Km is called the root absorption
power. If we assume the concentration in solution is
low, then Eq. [5] reduces to:

DYBDIC /or] + v,CP = kCV - E,
t>0,r=r, ’[6]
or, if we assume C, is high, then Eq. [5] reduces to:
DYBPRCP /o] + v,C0 = Joo — E,
t>0,r =r, ) [7]

] There are two boundary conditions at r,. The first
is that the concentration in solution profile is contin-
uous, i.e.:

D(l)bll

P =CcPt>0,r=r, (8]
and the second is that we have continuity of total flux:
nCP + DYVIC/or] = viC® + DPpP[aC P /or),

t>0,r=nr [9]

s

or using Eq. [8] in Eq. [9]:

) @2 2 (2)
s Db T —n 10)
ar DbV or
where v, is the velocity of water at r = r,.

We will consider two different boundary conditions
at the outer radius of influence (r,) of the root. First,
there is the possibility of no nutrient replenishment
at r, due to inter-root competition, (Cushman, 1979):

ac(2)
DPHO=L ?voc?’ =0,1>0,r=ry; [11]
2

and second, there is the case when there is no
competition:

CP=Cht>0,r=r, [12]

where C; is the initial concentration in the solution
phase.

For an initial condition we will assume an every-
where constant concentration in the solution phase:

cP=cP=cC,t=0. - [13]
If we assume that « is constant, we may introduce

the following list of nondimensional variables into the
equations of flow:

2 = (D), /% oL+ /7/[
M= r/r,, T % ,
v = —r v, /2D, CA % /(,M
P = kCi/Jmaxv 4
6 =1-ci/c,
d= E/kC,,
Q= —arl/b C.D",
A= D(l)/D(Z)’
T =k/v,,
and
a? = r/r,.

With these nondimensional variables, we set up two
problems that must be solved simultaneously:

1. Problem I (Region I)
a. Main Equation: ’
00 329® oM
=12 L 2] = 2 m
am® P ,u(l ) o + 0%, .
n>0,1<u<a?, [14] -

b. Boundary conditions [ and I'® are defined
immediately following the statement of the B.C.]:

30" /op = BVOD + TV, q >0, = 1. [15]
If there is a linear uptake rate,
BV =201 -7 and TV = -2[1 + (d - Dr].
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If there is constant uptake rate,
BV =2 and T® =2007r/p — dr - 1).
00 = 0@ 4V = \p?@ >0, u = a, [16]
69“’ NO) 89‘2’
au (2) a s nll) — }\,n(l) > 0 u= a( ), [17]
¢. Initial condition:

0" =0,1<pu<a® 4" =0. (18]

2, Problem II (Region II)
a. Main equation:
0?  329@ | 2 302
wm " Tl TP
7?>0,a"<pu<a?, [19]

b. Boundary conditions [8® and T'® are defined
immediately following the statement of the B.C.]:

@ :
&4& = B(Z)e(Z) + r(z)
o ’
If there is interroot competition,
=1, '8(2) = 2v(2)/a(2) and F(Z) = _[2V(2)/a(2)].
If there is no interroot competition,
#=0,2=1, and T? = 0.

We also have Eq. [16] and Eq [17] holding as bound-
ary conditions.
c. Initial condition:

2 1 2,
e()=0,a()$“$a()’

,n(Z) > 0, u= a(Z)_ [20]

n? = 0. [21]

SOLUTION TO THE TRANSPORT PROBLEM

Since the equations of flow established in the last
section are linear they are amenable to analytical so-
lution techniques. In particular we will follow and
generalized the solution procedure presented in Cush-
man (1979, 1980a).

Consider Problem I first and let

_ 0 Vu, 1) = f(w + glu, "), [22]
so that Eq. [14] and Eq. [15] reduce to
=f"+ i(l ~ 2" f + Q, [22a]

1
g=g +—(1 -2V
w
where

og  , _9d8

anu) » 8 o s [22b]

g=
‘and .
f’ - B(l)f+ F(”, w= 1’ ,n(l) > 0, [233]
g: - 'B(l)g’ u= 1, 'ﬂ“) > 0. [23b]
We also set f = Oat u = a®, ¥ > 0 so that O =
g =06%atpu =a" q">0.

The general solutions to Eq. [22a] and Eq. [22b] are:

flw) = 2 (1)!‘2“” - "M_Q—Vm)uz + FY, [24a]

glu, 1V = WA Lola"u] + BV Y0l ul}
expl— (@")'n"] + COu" + D, [24b]

where EV, FO, AD oM BV €W and DV are ar-
bitrary constants and J, and Y, are Bessel functions
of order v of the first and second kind. Insertion of
Eq. [23a, b] into Eq. [24a, b] and recalling f(a®) = 0
gives:

9“’[;;., 7)(1)] = A(l)ﬂvm{[amyvm_,(am)
— B“)Y,,(I)((!(”)]J,,(l)((!(l)[.t) — [a(l).’,,u)_x(a(l))
= BVLw(@MY,0(a ")} expl — (") n™]

) (1)
4 C(I)I:”}v“‘ + 2"____3_]

ﬁ(l)
: ﬁwn(am)z — P 421 4 TO )
+ WO+ gV _ 1] u
Y u

R

4(1 (1)) (2" - 13"’)&1“7)2 (" = 2@y
+ 2 ) + B(l)[(a(l))b“’ _ ]

[y
= ﬁ(.f[“( 3))2,“, : [25]

Similarly, the general solution to Eq. [19] that satisfies
Eq. [20] is as follows:

0%, 1?) = AP ([ Ao o (@)
- B?Y,0 (@®a?)J,e(e®p)

_ [ m(Z) Jv‘z)f l( a(z) a(Z)) . [26]
= B2J,0(a®a®)]Y,0(a®w)} expl ~ (@®)n®]

@ 2.,0’ ( &QV‘Z)(a‘z))z‘m 1 Bmaz"m) re
+C7p 5P ek

where A?, a®, and C? are arbitrary constants. So
that we may evaluate conditions [16] and [17] we set

a® = oV giving:
expl(a?yn®] = expl(a®)’An?)]

expl(a®Yn™] = expla’n), 27

where we have set a = o” and = o™,

The next logical step is to insert condition [16] fol-
lowed by condition [17] to give the
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& " \ Xa(u) is the characteristic (indicator) function of the
O(u, 1) = ’Zl An<x[1.a“’](”')ﬂ' ()" set A, the a, are the roots of
= 2y

{42, VX Y, _ (e, VX a?) 0 = {{sba, VX Y,o_ (@, VX a®)
- BVY,e(a, VX a®)J. (e, VX a®) - B?Y,0 (&, VX a?)] Jelo, VX a™)
- (Jﬂa,,\/x Ju"’—l(an\/)_‘ a?) - [&fa,,\/x J,,:z)_l(a,,\/x a?)
= B e, VX a®)Y,e(e, VX a®)Hla, ¥,0_ (cx,) = B, o(a, VX a®)] ¥ (e, VX a)]}
- B(I)Yv"'(an)]Jv”’(anﬂ) - [(an-’u‘”—l(an) : {[(X,, Yv‘”-—l(an) - B(”Yv‘”(an)] Jv“)— l(ana“))
= BVl Y olanm)} = [, Jyo_ ()
+ x[,,m'aa)](u)uvm(a(n)w){[an Yio_i(a,) O o vV
- B(l)Yy(l)(an)]-’y(l)(ana“)) - [Ot,.-’,,u)_l(an) - B J,,m(a,,)]Y,,m_l(a,,a )} - ﬁ{[anY,ﬂ)_,(an)
- B“)J,,m(a,,)]Y,,m(a,,am)} - B(I)Yv‘”(an)] Ju“’(ana(”) - [an-’v“’fl(an)

{(Ha, VX Y,o_ (@, VX a?) - = BPLole)Y ole,a ") Histe, VX Yo (e, VX a®?
- B?Y,ae, VX a®)J ele, VX ) ’ - B?Y,(a, VX a)] J,or_ (a,\VNa)
- [, VX Lo _ (e, VX a®) — [, VX J,o_ (e, VX a?)
- B(z),],(z)(a,,\/}_\ a?) yva,(a,,\/i y.)}> expl —aln] - B?, J,,tzr(a,,\/-)\. a?)] va——l(an\/x a®y,

ao 200 — g® and the A, are determined by the modified Gram—
+XiLaow)| Cl u* + —57— Schmidt method (Kirkham and Powers, 1972).

+ Eu” + Ep? + E,
T, TOTAL NUTRIENT UPTAKE

(0 il
+ X[ax.az](l")<{c[(am)2 + T] + E (@) Using the solution developed in the last section it
- is possible to construct an analytical representation
of the total nutrient absorbed by a growing root. In
particular, if we make the assumption that the roots
e are growing strictly parallel to the root axis, at a rate
(@ + Ej) - >, [28) such that the flux parallel to the root axis is negligible

re
+ El(a(l))Z + E2 + _B(_z)} . {szm + E3}/

e compared to the radial flux, then we can use the Cush-
where man (1979) equation for total uptake:
@) (VD=1 _ o) (@2 Tmax
E, = %2 @) = B @)™ T=2m,L,| Fids
(D __ (1) (N2 _ (1) __ + (1) (In2h max d Imax — ¢
E, = B Z2E@) ~ (B DE+ TN )™ + 2ar, f et f F(s)dsdr. [29]
2,0 B(l)[] — (@M)? ’] o dt Jo
Q The parameters in the above equation are total uptake
E =~ a1 - /) (T which is computed from ¢ = 0 to ¢ = t,,,), initial
root length [g(0) = L,], and flux of nutrient at the
_(B” — DE, + TV — gVE,(g")? root surface [F()]. We also assume the root grows
E, = 20 — B[1 — (@) ’ at the rate g(#). If we assume the roots are young and
~ growing at the exponential rate,
C = < — 2OE(a®)?*" 1 — 2E,a™ g0 = L, exp(yt) [30]
then we may follow Cushman (1979) and define a non-
+ Zy(l)('a(n)zurzuli Ef@™?” + E(aM? + E, dimensional uptake as follows:
) D(l)

Ty = rmkCL, U

r(2)
2) .
where T can be written

) 9y g , 3L Tmax
- 2v“’(a“’)’”‘"‘[(a“’)“‘" + VTUB—]/[(a“’ “”+E31}, T= ———2"'1';'55‘L°{ [T 1 - od,m - dan
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Nmax =7

+ ll'J; eXP(l!m)L [1-eods - d]dsdn}, [31]

and ym = ty.
We next define

P(x,y, z) = [exp(xy)
— exp(—zy)] (1 -

= )/z, (32]

X+ 2
and

O(x, y) = [exp(xy) — 1]/x. [33]

Using Eq. [32] and Eq. [33] we may write down the
closed-form nondimensional total nutrient uptake as
follows:

Ty = = 3 4G {[de,VX Vo @,V a®)

~ BO%,a(e, VX a®)J, o0,V a)

- [, VA Jo_ (e, VX a®)

- B¥,a(a, VX a®)]Y (e, VX aV)}
{la, Y00 ()

= BPYwleofen) — [and,o-(a)

= BLL( a1Vl P, Nimas, 02)

0 _ )
+ [1 —d—‘C_(l +2'f—‘f3(,)—ﬁ‘)

- EO - El - EZ] Q("” nmax)' [34]

Although Eq. [34] holds for both high and low nutrient
contents in soil solution, a simpler equation exists for
the case where the nutrient content in solution is high
(Cushman,1980b):

TY = expnmay) — 1, [35]
and

T* = 207, LoUmes — E) }/ (eXp(¥me) — 11, [36]

DISCUSSION

Transport and availability of nutrient between the
inside and the outside of the root rhizosphere may be
substantially different. The difference arises from the
differing coefficients of transport and the varying nu-
trient productivity rates. We have presented a system
of two coupled equations and four sets of boundary
conditions to represent the differing flow mechanisms
inside and outside the rhizosphere. The equations
were nondimensionalized and solved. via use of an
infinite series of Bessel functions and the modified
Gram-Schmidt procedure. The analytical concentra-
tion equation was evaluated at the root surface and
substituted into an equation representing total nutrient
uptake for a root growing at an exponential rate. In
this fashion we are able to give a closed form exact
description of the cumulative nutrient uptake.

In the second of this sequence of two articles I will
examine the general Michaelis—Menton boundary con-
dition, present a numerical algorithm for the solution
to the nonlinear problem, present detailed graphical
results for the equations developed in this article as
a function of the numerous possible parameter values,
compare the nonlinear to the linear solutions, examine
a nonlinear production term, and draw overall con-
clusions concerning the analytical effect of the rhi-
zosphere on nutrient uptake.
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