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Abstract - A model for root growth of crops through a free boundary problem is studied.

The resultant effects from differences in nutrient availability and transport between the root surface and
the rhizosphere produced by the a active absorption type MichaelissMenten for low concentrations are
studied. The model equations are solved by the mass balance integral method and the numerical solution is
used to compute growth of root radius.

Examples of concentration at the root-soil interface curves as a function of root radius and root radius
as afunction of time are plotted. The parameters which are varied are the root absorption power, flux velocity
at the root surface, efflux, rhizosphere soil solution concentration, diffusion coefficient, and buffer power.

INTRODUCTION

One of the methods for studying the nutrient uptake by plant roots, which can be a satisfactory method
of modelling the plant-root system is by use of the partial differential equation for convective and diffusive
flow to aroot [1,2,3,4].

In two recent papers [5,6] a method for compute the root growth through a free boundary problem has
been proposed. In these papers, the root soil interface s(t) (the root radius) as a function of time and the
interface concentration C(s) as a function of the interface position s(t) are computed by the quasi-stationnary
method [7]. The goal of the present paper is to compute the interface position s(t) as a function of t and the
interface concentration C(s(t),t) as a function of s(t) and t by application of the mass balance integral method
(similar to the heat balance integral method [8,9]).

PHYSICAL MODEL AND GOVERNING EQUATIONS

Because of the rather complicated scenario of the plant-root system, as a first step toward achieving
some understanding of the physical and chemical processes involved, and idealized one-dimenssional
diffusion-convection model was chosen for this study. It is based on the following assumptions [3,5,6] :

- A vertical cylindrical root summersed in a porous homogeneous and isotropic medium (the soil),

- Moisture conditions maintained at a steady state,

- Nutrient uptake occurs at the root surface of the absorption zone,

- The rate of uptake can be described by a Michaelis Menten type equation,

- The nutrient transport occurs via convection and diffusion in the radial direction only (the latter

takes place in soil solution phase only). Vertical flow in the soil is not consider,
- Therate of influx at infinite concentration (J,,) and the Michaelis Menten constant (Ky,) are



independent of the velocity of soil water at the root (vy),
- The coefficient diffusion (D) isindependent of the flux,

ac;

- D and the buffer power b ( b = 9 \where Cisthetota diffusableion concentration and C; isthe

ion concentration in soil sol ution) are independent of concentration,

- The root system parameters are not changed by root age (the root absorption power k =

constant)

- The convective velocity of water at root surface is not affected by nutrient concentration,

- Production or depletion of nutrient by microbial or other activity isnull,

- All parameters D, b, k are independent of temperature, in the temperature range normally

encountered in root growth,
The net uptake of nutrient istotally available for growth,
Root hairs do not affect the nutrient uptake.

Jn

Km

The governing equations for mass and diffusive transport of nutrient to the root [3] as well as the
governing equations for root growth in the root-soil interface are given in the following free boundary

problem [10,11,12] (in cylindrical coordinates) by:

i) DCy + D1 + €) & = Cy, st) <r<R,0<t<T,
i) Ci(r,0) = ®(n) , S < r <R,
iii) C(RY) =C, >0 , 0<t<T,
iv) D b Ci(s(t).t) + Vo Ci(S(D).t) = ffa‘i‘%&?o -E,0<t<T,
V) D b C(s(t),t) + vo Ci(s(t),t) = aC(st)t)s(t), 0 <t < T,
vi) 50) = 5 , 0 <s <R
where:
2
Clr = %r Clrr = %, Clt = (?_(%/’

oy

r is the position coordinate, t the time, T is the time for which there exists solution, i) is the Cushman
equation, which is a simple application of the principle of conservation of mass (in soil) under steady
moisture conditions with the nutrient flux consisting of two components (diffusive and convective) [3], ii) and
iii) arethe initial and boundary conditions respectively, iv) and v) are the interface conditions representing the
mass nutrient balance, iv) expresses the equality of the rate of net mass absorption of the unique ion
considered in the active kinetics (right hand side) and the incoming total mass and diffusive flux (left hand
side), v) states the same balance in terms of the free boundary velocity, since a Cy(s(t),t) §(t) is again the rate
of the mass absorption of the ion [11,13] and vi) is the initial condition for the free boundary s(t) (interface
root-soil or root radius). §(t) = % isthe interface velocity, ais a stoichiometric coefficient, E is a constant
efflux, R is the rhizosphere radius, C, is the soil solution concentration on the rhizosphere radius, and s, is

theinitial radius. The parameter ¢ is given by

_ VoS
e =3 > 0.

d(r) istheinitial concentration profile (given by the equation (15) below).
From now on, we shall denote C; by C for convewnience in the notation.
The two free boundary conditions (1-iv) can be written by:

Ci(s(t).t) = g(C(s(t).1) : t>0
s(t) = f(C(s(t).1) , t>0
where functions g and f are given by:
90 = o5 [25c — E - wC @

(2
3)



Q) = & |

E
1+£C 6} (5)
which satisfy the following properties:
(6)
(©>0 & C>C= %
where: 52 = kK

d = /[ I+ 62(dm — E)]? — 4623,E

To solve (1) (that is, to compute C = C(r,t) (in particular, C = C(s(t),t) ) and the free boundary
interfacer = s(t) apriori unknown) we apply the mass balance integral method [8,9] to the present case for
Thus:

root growth. The solution is found integring the partial differential equation (1-i) in r on the domain (s(t),R).

R R R
JC{rtydr = D [Cu(r)dr + DA + ¢) [ qr
() s(t)

and we propose;

©)
()
Crp = e [1 + SOR — 1]

9)
which depend on the parameters of the system and satisfy the initial and boundary conditions 1-ii) and 1-iii),
that is:

C(r,0)

®(r)
C(RY)

< BO) =0,

(10)
(11)
Wedenotea = oft) by:
oft) = C(s(t).t) (12)
which depends on the parameters of the system through s(t), ®(s(t)) and ().

Replacing (11) and (12) in Eq. (8), after some elementary manipulations, the problem (1) reducesto:

fRCt(r,t)dr =D[C(RY) — gla(t)] + DA +¢) % — % + fR% dr[,t>0
s(t) s(t)
5(t) = f(aft)), t>0

(13)
S0 = % .

Using the approximation %E"_C ~ k C (valid for low concentration), and
Jm

replacing (9) in Eqg. (13), after some elementary manipulations we obtain the following system of two
coupled ordinary differential equations (see Appendix) (valid for thecasese # 1, 2):



%ZFl(FZ+FB+F4+F5+F6+F7) ' 50 = 0

d
D=3 [" - TETIT0 (R—s(t»]} - M=% 04
and:
o0 = C + AL~ (3)] (15)
where:
Fi= D . (16)

R{(C%+A)[R7qt)]+ARts(:(l;:)(()t)—AR } 7{ cg;A (RLsZ(t)) +AR65(2(722)§;)7AR2 }

Fo= % — CuB) — 55 (@S [1 + B0 (R — s() ] (k — vo) — E, (17)

Fm(l+ 0% — (1+ ¢ MO0 ORS (18)

Fo= @1+ Cu +AA+ SOR) [% . %], (19)

Fs = — (1 + &) A(t) (Cx + A)ln (%) (20)

Fo = S ABOR [ - 4], (21)

Fr= — ARIL+ GOR [ — &), (22)
S (23)

Remark 1 : The initial profile concentration ®(r) given by the Eq. (15) above has been computed by the quasi-
stationary method [4] and it is determinated by the system, similarly to the Cushmarvs prediction [4].

Remark 2 : For the particular casese = 1 and 2, we can obtain a similar system to (14) of two ordinary differential
equations.

Remark 3 : For the general rank of concentration C we can obtain a similar system to (14) of two ordinary
differential equations.

The solution of system (14) is computed numerically by the Runge-Kutta method for a system of ordinary

differential equations. The following figures represents results for the interface concentration C(s(t),t) vs. s and the

i " i i i ; 2 _ k
interface position S(t) vs. t respectively as a function of the dimensionless parameter 6« = v
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Fig. 2. Root radius s(¢) vs f as a function of absorption power k.
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Fig. 3. Interface concentration C(s) vs s as a function of flux velocity at root surface v.
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CONCLUSIONS

We conclude from the model presented above that the free boundary s = $(t) increases when absorption
power k increses (Fig. 2) (i.e, the dimensionless parameter k/v, increases with v, = Const.) or when the soil
solution concentration C,, increases (Fig. 6). Moreover, s = (t) decreases when the efflux E increases (Fig. 8).
Likewise, s = g(t) decreases when the buffer power b (Fig. 12) or the diffusion coefficient D (Fig.10) increases,
although this effect is meaningless for high values (e.g. 10) of the dimensionless parameter k/v,. Moreover, s =
S(t) increases when the flux velocity at the root surface v, increases (Fig. 4) (i.e, the parameter k/v, decreases with
k = Const.).

The behavior of interface concentration C(s(t),t) as a function of k,v,,C,E,D,and b (Figures 1,3,5,7,9,11) is
quite similar to results obtained by the quasi-stationary method applied to the same model [5].

From the other hand, by comparison of the results obtained in [5] by the quasi-stationary method and in this
paper by the balance integral method we can conclude that : first, the qualitative behavior of the results is quite
similar for both methods, and secondly the balance integral method give us a more detailed theoretical information,
for example the variation of s(t) vs. t with respect to the parameter v, is negligible for the quasi-stationary method
[5] (See Fig. 4).

Thus, we can remark that the present model gives us a qualitative approach to root growth under the
absorption of only one nutrient, with natural limitationsin the real situation. Moreover, these conclusions are useful
to outline more complex models for nutrient transport and root growth.

Finally, we remark that the present formulation is also valid for the any rank of concentrations with
appropriate functions g and f.
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APPENDIX

Replacing (9) in Eq.(13), after some manipulations, we obtain:

R R R R
JCrpdr = [SMBMR—ndr = RB(L)[(dr — B() [rd(r)dr
s(t) s(t) s(t) s(t)

and, taking into account (15) and (23), we obtain:
R R R R
J@(r)dr = Cofdr + Afdr — AR [r“dr =

S(t) S(t) S(t) S(t)
= (Cx +AIR- O] — 8+ 48589(D) (withe # 1)




[ré(dr = Cfrdr + Afrdr — AR [r3=9dr
SO s(t) s(0) st

- (%) R2— 2] — 655+ 55552791,  (withe # 2)

then:

R
Crodr = RAW|(Cx + AR - s(O] — 25 + A8 s49()] -
)

st

— B [(Cw;’*) R? — (1) — A% + &5, s(H(t)] (A1)

Similarly, we obtain:

R R €
Lhar = [ F[CetA|L1-(]) |[[1+BOR-D]dr =
I Jafecral- ()]
R R
= [(Cox +AN1+ BRI [ & — [AR[L+ BOR]] [ &z —
(1) s(t)
R R
— [BOCx +A)] [ & + ABHR [ 4 =
(1) s(t)

- et -] - S - ] -

— BOC+A) In & + AR L] (A2)
Finally, replacing (A1) and (A2) in Eqg. (13), after elementary manipulations, we obtain the
system (14).

Acknowledgements — This paper has beeen partially sponsored by the Projects

" Problemas de Frontera Libre de la Fisica — Matematica” from CONICET — UNR,
Rosario (Argentina) and” Problemas de Frontera Libre y Crecimiento de Raices de
Cultivos”, fromUN RC, Rio Cuarto (Argentina). The authors are also grate ful to
Professor A. Cantero for many stimulating discussions concerningthis paper

NOMENCLATURE



Position (radius) coordinate (cm)

Time (9)

Rate of influx at infinite concentration (mol/s-cm?)
Michaelis Menten constant (mol/cm?)

Absorption power of root (cm/s)

Velocity of flux solution at root surface (c¢m/s)
Effective diffusion coefficient(cm?/s)

Total diffusableion concentration (mol /cm?)

Soil solution concentration (mol /cm?)

C(s(t),t):Soil solution concentration at root-soil interface (mol/cm?)

D(r):
Cu:
E:

R:

S
S(t):
5(1):
b:

a
€

Initial concentration profile (mol /cm?)

Constant rhizosphere soil solution concentration (mol/cm?)
Constant efflux (mol/s — cm?)

Rhizosphere radius (c¢m)

Initial radius(cm)

Instantaneous root radius

Instantaneous vel osity of root-soil interface

Bufffer power (dimensionless)

Stoichiometric coefficient

Parameter (dimensionless)



