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Root growth. A short introduction

The soil provides
to the plant with
five factors for

growth

Support for the
plant

Oxygen for root
respiration

Ions to build new
tissue

Liquid (water)

Thermal energy
To survive

plants need  on
roots to absorb

Water required

Ions required



Root growth introduction
The germination results in the development of shoots upwards and

roots downwards. As the roots move through the soil they find a 
growing source of ions and water



Root growth introduction

The roots grow in the path of minor resistance and they extend in the 
porous spaces of soil. The roots change their directions when they 
find Peds which are aggregates of resistant soil

Root pathRoot path



Root growth introduction

Root envirommentRoot enviromment

As the roots absorbs and 
dries the source of water and 
adjacent ions to them, fortuitously  
extends through the root zone. In 
the majority of the annual and 
horticultural cultivation, the radical 
systems will penetrate to a depth of 
1 meter or more

Besides, following the path 
of minor resistance, roots also grow 
where the media is better. Here the 
roots avoid the dry and arid soil 
while they grow in the moist and 
fertile soil



Root growth Introduction : Nutrient uptake
The root incorporates adjacent ions, then it is important that  

ions move towards the root. As the root grows through the 
soil absorbs ions and water in direct contact with it.

 

INTERSECTION (INTERSECTION (≈≈≈≈≈≈≈≈ 1%)1%)



Root growth introduction

As the water adjacent to the root is absorbed, a gradient of potential 
water is established which cause the water to move slowly towards 
the roots transporting ions. The process of ions moving towards the 
root with the movement of the water is called the CONVECTIVE CONVECTIVE 
FLUX FLUX 

The convective flux depends on the ion concentration in solution and 
on the amount of water moved towards the root which is 
proportional to the plant respiration

The ions in soil solution diffuse slowly towards the root whether exists 
or not water moving towards it. The process is denominated 
DIFFUSIVE FLUXDIFFUSIVE FLUX

ONLY  IONS IN THE ROOT SURFACE ARE AVAILABLE ONLY  IONS IN THE ROOT SURFACE ARE AVAILABLE 
FOR UPTAKEFOR UPTAKE



Root growth introduction 

 NUTRIENT
ABSORPTION

INTERSECTION
(nutrients which the
plant finds by direct

contact)

CONVECTIVE FLUX
(nutrients transported by

water movement)

DIFFUSIVE FLUX
(nutrient movement

through soil solution)



Root growth Introduction

ROOT DISTRIBUTION
The plant capacity to absorb water and 

ions is related to root length (area 
density of the root surface). Uptake 
is based on ions availability and 
root length

UPTAKE = Ions availability by root 
length (density of superficial area)

ROOT LENGTH
What total root length has a plant as 
wheat in 1 acre to a depth of 75 cm?
Excluding hairs, the total length is 
5830 miles = 9329 km.

UPTAKE OF WATER AND IONS IS DEPENDENT ON ROOT LENGTH UPTAKE OF WATER AND IONS IS DEPENDENT ON ROOT LENGTH 
(SURFACE AREA DENSITY) AND AS IT INCREASES, THE (SURFACE AREA DENSITY) AND AS IT INCREASES, THE 

ABSORPTION OF WATER AND IONS INCREASES TOOABSORPTION OF WATER AND IONS INCREASES TOO



Models related to root growth

The crop functioning optimization is obtained through models 
simulation which predict the system behavior or subsystem during
the growth period

MODELS

System root
growth and
proliferation

Transport and
nutrient
uptake

Transport and
water uptake



Root growth, water and nutrient uptake models

System root
growth models

and their
proliferation

Arquitectonic Models
Grant,1993; Shibusawa,
1992; Bengough, 1992

Continuous proliferation
models with differential

equations
Brugge, 1985; Subbaiah,

1993

Termodynamic Models
McCoy, 1991

Transport and
water uptake

Water flux models with a
sink represented by lhe

root
Van den Honert, 1948;

Gardner, 1960; Molz, 1981

Transport and
nutrient
uptake

Statistical empirical
Models

Response function
Ross, 1981, Yerokum 1990,

Pate, 1979

Mechanistic models
 Mathematical description

of processes
Nye, 1969;Claasen-Barber,

1976; Cushman, 1979

Nutrient uptake balance
Intermediate

Wolf, 1989; Borg, 1990



Transport and absorption of nutrient.
Mechanistic models

FIXED DOM INION
Claasen-Barber, 1976
Cushman 1979,80,82

Silberbush, 1983
Barber, 1984

VARIABLE DOM INION  NO
COUPLED

Nye, 1969, 1977
Hoffland, 1990

VARIABLE DOM INION  NO
COUPLED

Nye and Tinker, 1977
Smethurst, 1993

Transport equations
coupled with

absorption kinetics

Root sink
 Total absorción =
=convective flux +

difussive flux
Available root

Volumen vary with
root length

Analytical solution
Average

concentration =
stationary case
Available root
volume with

variable depletion
zone

Mechanistic
Models



Free and moving boundary models

Course 
Program

Qualitative Free
boundary model for 

root growth

Quantitative nutrient 
uptake model

Quantitative moving 
boundary model for 

multispecie absorption

Quantitative  moving 
boundary model for 

water uptake

Soil Aeration. A
quantitative free
boundary model

Free and moving boundary Free and moving boundary 
problems can describe more problems can describe more 
precisely the coupling between  precisely the coupling between  
transport,  nutrient and water transport,  nutrient and water 
absorption and root growthabsorption and root growth



Although you perhaps no imagine it, you live surrounded by 
phenomena that involve problems of "free boundary”, which go 

from:

the small things of daily life as:
the way in which a cube of ice goes changing form and size in a 

water glass, or the way in which a jet of milk is spread in a cup of 
coffee 

to varied and important industrial processes like
Steel continuous casting, freezing and defrosting of food, 

solidification of plastics, solidification of pavements, etcetera. 

as well as medical applications
diffusion-consumption of oxygen in live tissues, for the treatment 

of tumors by means of radiations.

To agronomical applications
Root growth

What Are The Free Boundary Problems?



But, what are the problems of free boundary, and 
why do we call them so?

Nothing better that analyzing an example. If an ice bar contained in 
a receptacle is heated in one of its ends, it will begin to melt
from an end and it will go advancing a "front of fusion”. In every 
moment later it will be a zone still frozen (the more distant of the 
heat source), other in liquid state, and a surface of contact 
between both regions, (or which is the same a boundary that 
separates them). With time the liquid phase will occupy a bigger
space each time, for which such boundary will move and 
fortuitously changing form. 

The free boundary name comes of, in each moment; the location 
and form of this boundary are unknown.

Fusion front

Frozen zoneLiquid zoneLiquid zone



But, what are the problems of free boundary, and 
why we call them so?

The physical-mathematical problem consists in predicting which will  
the position of that boundary be at every moment, and which will
the temperature in each point of the bar be. 

This problem (denominated Stefan problem) constitutes only one of 
the types of free boundary problems, and it appears in industries 
such as:

Steel (steel continuous casting), 
Refrigerator (freezing or defrosting of foods), 
Metallurgical (solidification of binary alloys,  metals welding), 
Plastic (solidification of diverse products) 
Nuclear technology (prevention of accidents due to 
fusion of radioactive material) 
Civil engineering (solidification of moist soils)  
Solar energy (architecture), etcetera.



Other classes of "free boundary"

that don't correspond to a front of change of state, are those which 
appears, for example, in problems of:

Chemical engineering: 
diffusion-gasoline reaction-solid, processes of oxidation, poisoning 

of catalysts.
Hydraulics: 

case of the porous dike. 
Ecology:

propagation of fires, propagation of stains of petroleum in water, 
growth of species, storm fronts, melting of glaciers

Electronic:
semiconductors. 

Agronomy:
root growth of crops, nutrient and water uptake, anaerobiosis



Introduction to the Stefan problem and its 
applications

In 1831, Lamé and Clapeyron studied the problem of the solidification 
for cooling of a liquid globe (earth) in the following way. The earth is 
supossed to be a sphere that verifies the following hypothesis:

1) originally it was liquid and composed of a single substance, which it 
found to the temperature of fusion

2) it cools in the space and it solidifies from the exterior surface 
inwards, which rapidly takes a media temperature constant, θo < θf

3) the solid cortex already formed in our days has not a considerable 
thickness compared to the terrestrial radius, and then it is obtained 
that:

a) the thickness of the solid part that covers our earth increases 
proportionally to    , where t is the time since the beginning of 
solidification

b) the knowledge of the age of the solid part of the earth depends on 
numerous coefficients that can be easily obtained from the 
experience. These coefficients depend only on the solid phase.

t



The Lame-Clayperon problem

Really, below the hypothesis given previously, Lamé and Clayperon
solves the problem of the solidification of a material partly-infinite, 
represented by x > 0, that initially is in liquid phase to their
temperature of fusion and that in the extreme x = 0 is cooled to a 
temperature θo lower to that of fusion.

x =s (t)

Solid phase to     Liquid phase to
θ = θ(x, t)    θ = θf

Liquid phase  θ = θf

x = 0 x = s(t)

Solid phase  θ =θ(x,t)

The earth center is  
x = ∞∞∞∞



The mathematical model of Lamé and Clayperon

From a mathematical viewpoint, the problem can be outlined in the 
following way: To find the function s = s(t) (free boundary that
separates the solid phase from the liquid phase and that it is to 
constant temperature) defined by t > 0 with s(0) = 0, and the 
temperature so that it satisfies the following conditions:

f

(x, t) if 0 x s(t), t 0
if s(t) x, t 0

θ = θ < < >θ = θ < < >θ = θ < < >θ = θ < < >
θ =θ =θ =θ = 

θ ≤ >θ ≤ >θ ≤ >θ ≤ >

so that it satisfies the following conditions:
2

2

o f

f

i) c k , 0 x s(t), t 0
t x

ii) (0, t) , t 0
iii) (s(t), t ) , t 0

(s(t), t ) ds(t)iv) k , t 0
x d t

v) s(0) 0

 ∂θ ∂ θ∂θ ∂ θ∂θ ∂ θ∂θ ∂ θ
ρ = < < >ρ = < < >ρ = < < >ρ = < < > ∂ ∂∂ ∂∂ ∂∂ ∂
θ = θ > θ >θ = θ > θ >θ = θ > θ >θ = θ > θ >


θ = θ >θ = θ >θ = θ >θ = θ >

 ∂θ∂θ∂θ∂θ = ρλ >= ρλ >= ρλ >= ρλ >
∂∂∂∂

 ====



Properties of free boundary problem

It must be remarked that the problem is named to a phase because, in 
our case, the liquid phase finds to constant temperature and equal 
to the temperature of the phase change

The Stefan problem is not linear in spite of the apparent linearity of 
the conditions i)-v). In effect, if (iii) it is derived respect to t, it is 
obtained that:

then, the Stefan condition (iv) is transformed to

which indicates that the problem is not linear.

(s(t), t) ds(t) (s(t), t) 0, t 0
x dt t

∂θ ∂θ∂θ ∂θ∂θ ∂θ∂θ ∂θ
+ = >+ = >+ = >+ = >

∂ ∂∂ ∂∂ ∂∂ ∂

2 2

2
(s(t), t) (s(t), t) k (s(t), t)k l

x t c x
∂θ ∂θ λ ∂ θ∂θ ∂θ λ ∂ θ∂θ ∂θ λ ∂ θ∂θ ∂θ λ ∂ θ     = −ρ = −= −ρ = −= −ρ = −= −ρ = −    ∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂∂ ∂ ∂    



Types of boundary problems
The Stefan problem is a free boundary problem for the heat equation 

of the explicit type. In general, the problems that are outlined for the 
heat equation or diffusion are classified in the following way

The fixed boundary problem for the heat equation (diffusion) are those 
that are studied in the dominion (x1,x2) x (0,t).

The moving boundary problems for the heat equation (diffusion) are 
those that are studied in the dominion (s1(t), s2(t ))  x (0,T) with s1(t) 
< s2(t) functions given in (0,t), that is to say, that the space 
dominion of the unknown functions is variable with time by means
of a law of  movement known a priori

fixed

moving
boundary problems

explicit type
free

implicit type







 
 





Free boundary problems explicit and implicit

The free boundary problems for the heat equation are those for 
which the space dominion of the unknown functions to compute 
is variable as a function of time through a movement law 
unknown a priori (Lamé and Clayperon)

The free boundary problems are explicit or implicit if the free 
boundary velocity appears explicitly in the conditions that are 
imposes on that boundary, e.i, if s = s(t) appears explicitly in the 
condition iv). Instead, if this velocity is not present, the free 
boundary is implicit (difussion-consumption of oxigen in alives 
tissues, anaerobiosis)



Bibliography on free and moving boundary 

Bibliography (Database) 
on moving and free
boundary problems for the 
heat-diffusion equation,
particularly regarding the 
Stefan and related 
problems contains 5869
titles referring to:

588 scientific Journals, 
122 books, 
88 symposia
30 collections, 
59 thesis and
247 technical reports.
It tries to give a
comprehensive account of 
the western existing 
mathematical-physical-
engineering literature on 
this research field.
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The free boundary for root growth
Many methods exist for studying the mechanism involved in 

nutrient uptake. These methods model the plant-root system by 
use of the partial differential equation for convective and 
diffusive flow to a root 
Claassen and Barber, 1966; 
Nye and Marriot, 1969; 
Cushmann, 1979, 1980, 1982.

In general,  these models have not considered computing root In general,  these models have not considered computing root 
growth, but rather they have assumed young roots to be growth, but rather they have assumed young roots to be 
growing at exponential rates growing at exponential rates 

In the past, various models have been proposed and analyzed with
the purpose of interpreting growing process as a free boundary 
problem for the heat-diffusion equation 
Lame and Clayperon, 1831; Stefan, 1889; 
Carslaw and Jaeger, 1959; Crank, 1975; 



The Root Growth Model. Model assumptions
• The soil is homogeneous and isotropic,
• Moisture conditions are maintained constant
• Nutrient uptake occurs at root surface 
• The roots are smooth cylinders,
• Uptake is described by the Michaelis-Menten equation,
• The nutrient transport occurs via convection and  diffusion in the 

radial direction only 
• Parameters (Jm) and (Km) are independent from the velocity of soil 

water at the root (vo)
• The diffusion coefficient (D) is independent of flux,
• D and the buffer power b are independent of concentration,
• The root system parameters are not changed by root age (k =

Jm/Km = constant),
• The velocity of water is not affected by nutrient concentration,
• Production or depletion of nutrient by microbial or other activity is 

null,  
• All parameters D,b,k are independent from temperature, 
• The net uptake of nutrient is totally available for growth, 
• Root hairs do not affect nutrient uptake.



Root growth model

With the above assumptions, the root growth model is given (in 
cylindrical coordinates) by:

2

2

o

R

a
O

a

m

a

a

m

C D(1 ) C Ci) D , s(t) r R, 0 t T
r r tr

ii) C(r,0) (r), s r R
iii) C(R, t) C , 0 t T

k C(s(t), t)C(s(t), t)v) Db v C(s(t), t) Ek C(s(t), t)1) r 1
J

k C(s(t), t) ds(t)vi) E aC(s(t), t) , 0 t Tk C(s(t), t) dt1
J

vi) s

∂ + ε ∂ ∂∂ + ε ∂ ∂∂ + ε ∂ ∂∂ + ε ∂ ∂
+ = < < < <+ = < < < <+ = < < < <+ = < < < <

∂ ∂∂ ∂∂ ∂∂ ∂∂∂∂∂
= ϕ ≤ ≤= ϕ ≤ ≤= ϕ ≤ ≤= ϕ ≤ ≤

= < <= < <= < <= < <

∂∂∂∂
+ = − =+ = − =+ = − =+ = − =

∂∂∂∂ ++++

− = < <− = < <− = < <− = < <
++++

o o(0) s , 0 s R
















 = < <= < <= < <= < <



A schematic diagram for root growth model
A schematic diagram of free boundary problem is given in the 

following outline:

root

C(r,0)=φ(r)

(1-i)

r=s(t)

C(R,t)=CR



Analytical solution. The quasistationary method
In this method it is assumed that the soil concentration is that

corresponding to stationary case in the interval (s(t),R). Then the 
problem is reduced to solve the equation:

With the conditions (ii, iii, iv and v).The solution of the problem by low 

concentrations                                                  is given by:

Where:

r
rr o

CDC D(1 ) 0, s(t) r R, 0 t T
r

+ + ε = < < < <+ + ε = < < < <+ + ε = < < < <+ + ε = < < < <

(t)C(r,t) (t) , s(t) r R, t 0
r εεεε

αααα
= β − < < >= β − < < >= β − < < >= β − < < >

[[[[ ]]]]

[[[[ ]]]]

o R
R

o
1

o R
R

o
o

o

(k v )C E1 (t)(t) , (t) C ,
Db R(k v ) 1 1

Dbs(t) Rs(t)
(k v )C E 1 1(r) C

r (t) Rv 1 1(k v )
s s (t) R

εεεε

ε+ • εε+ • εε+ • εε+ • ε

εεεε

ε εε εε εε ε

ε ε εε ε εε ε εε ε ε

− −− −− −− − αααα    α = β = +α = β = +α = β = +α = β = +              −−−−εεεε     + −+ −+ −+ −
        

− −− −− −− −     
ϕ = − −ϕ = − −ϕ = − −ϕ = − −             + − −+ − −+ − −+ − −    

    

(((( ))))(((( ))))a a m ak C(s(t), t) / 1 k C(s(t), t) / J k C(s(t), t)+ ≅+ ≅+ ≅+ ≅



The quasistationary method

And s(t) is the only solution of the following Cauchy problem:

With:

[[[[ ]]]]
[[[[ ]]]]

[[[[ ]]]]
2

3
1

1 G(s)k sF(s) 1 (H(s) , H(s) , G(s) s 1
a 1 G(s) R

εεεε    +α+α+α+α     
= −α = = −= −α = = −= −α = = −= −α = = −        +α+α+α+α             

o u
1 2 3

o o R o o R m

(k v ) CE E, , 0
v s C v s kC C

−−−−
α = α = α = = >α = α = α = = >α = α = α = = >α = α = α = = >

RCC(s(t), t) ( C(s(t))), t 0
H(s(t))

= = >= = >= = >= = >

o

ds(t) F(s(t)), t 0
dt

s(0) s (0,R)

= >= >= >= >

= ∈= ∈= ∈= ∈



The quasistationary method

Let γ be the parameter defined by:                                  . It can prove 
that if

and

(((( ))))
1

o R 2

E
k v C

αααα
γ = =γ = =γ = =γ = =

− α− α− α− α

R

o

R

1 C(s(t)) C then absorption power 
k v  and there is no counterdiffusion

is 1 C(s(t)) remains constant

1 C(s(t)) C because k is small and root 
can not absorbs all the nutrient and
there iscounterdiffusion


 < ⇒ << ⇒ << ⇒ << ⇒ <

γγγγ = ⇒= ⇒= ⇒= ⇒

> ⇒ >> ⇒ >> ⇒ >> ⇒ >

�� ��










2

3 1

1 R1 s(t) 0
1 R

••••+ α+ α+ α+ α
≥ ⇒ >≥ ⇒ >≥ ⇒ >≥ ⇒ >

α + αα + αα + αα + α



Quasi-stationary method solution
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The quasistationary method
Effect of system parameters
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The quasistationary method

                                                    

                                                    

                                                    

                                                    

                                                    

0,5 1,0 1,5 2,0

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

CR

k

E

vo, D, b, R, sovo, D, b, R, so

E

CR
k

k = 2.4x10-7 cm/sec
vo = 0.8x10--7 cm/sec
CR = 1x10-7 mol/cm3

E = 1x10-14 mol/cm2-sec
D = 1x10-7 cm2/sec,  b = 0.2
so = 0.05 cm,  R = 0.4 cm
a = 1

Ro
ot

 ra
di

us
 to

 1
0 

da
ys

 (c
m

)

Change ratio



Approximated solution. The integral balance method
To solve the problem (1- i, ii,iii,iv, and vi), i.e., C = C(r,t) (specially 

C=C(s(t),t) and the free boundary r = s(t)) we integrate the differential 
equation (1-i) in r on the dominion (s(t),r):

And it is proposed that:

That verifies

R R R
r

t rr
s(t) s(t) s(t)

C (r,t)C (r,t)dr D C (r,t)dr D(1 ) dr
r

= + + ε= + + ε= + + ε= + + ε∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫

[[[[ ]]]]C(r,t) (r) 1 (t)(R r)= ϕ + β −= ϕ + β −= ϕ + β −= ϕ + β −

R R

C(r,0) (r ) (0) 0
C(R, t) C (R) C

= ϕ ⇔ β == ϕ ⇔ β == ϕ ⇔ β == ϕ ⇔ β =

= ⇔ ϕ == ⇔ ϕ == ⇔ ϕ == ⇔ ϕ =
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R
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C (r,t)dr D C (R,t) g( (t))
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Replacing C(r,t) 

in

we obtain:

R
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C(r, t)dr∫∫∫∫



The balance integral method solution

Replacing                                   in 2) we obtain the following ordinary 

differential equations system:
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The balance integral method solution
Where:

(((( )))) [[[[ ]]]]

(((( ))))

[[[[ ]]]]

o R

o
o

(1 )

1 R

(2 ) 2
2 2R

2

1
1 2

2 R o

R
3

E (k v )CA ,
Rk 1 v
s

AR s (t) ARA C A R s(t)
(1 )

C A AR s (t) ARA R s (t)
2 (2 )

DF ,
RA A
A 1F C (t) (s(t) 1 (t)(R s(t)) (k v ) E ,
R Db

CF (1 ) (1 )
R

εεεε

ε −εε −εε −εε −ε

ε −εε −εε −εε −ε

− −− −− −− −
====

        
    − −− −− −− −    
            

    −−−−
= + − += + − += + − += + − +    

− ε− ε− ε− ε    

    + −+ −+ −+ −
= − += − += − += − +    

− ε− ε− ε− ε    

====
−−−−

εεεε
    = − β − ϕ + β − − −= − β − ϕ + β − − −= − β − ϕ + β − − −= − β − ϕ + β − − −    

ϕϕϕϕ
= + ε − + ε= + ε − + ε= + ε − + ε= + ε − + ε

[[[[ ]]]]

(((( ))))

(((( ))))

[[[[ ]]]]

4 R

5 R

6

7 1 1

(s(t) 1 (t)(R s(t))
,

s(t)
1 1F (1 ) C A (1 (t)R) ,

s(t) R
RF (1 ) (t) C A ln ,

s(t)
(1 ) 1 1F A (t)R ,

s (t) R
1 1F AR 1 (t)R .

s (t) R

εεεε

ε εε εε εε ε

εεεε

ε+ ε+ε+ ε+ε+ ε+ε+ ε+

+ β −+ β −+ β −+ β −

    
= + ε + + β −= + ε + + β −= + ε + + β −= + ε + + β −    

    

    
= − + ε β += − + ε β += − + ε β += − + ε β +     

    

    + ε+ ε+ ε+ ε
= β −= β −= β −= β −    εεεε     

    
= − + β −= − + β −= − + β −= − + β −    

    



The balance integral method solution
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The balance integral method solution
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Root Growth models conclusions

From the comparison of the theoretical results of the model for the 
effects on the growth in low and high concentrations we conclude
that: absorption kinetic in low concentrations is more efficient than 
the same mechanism for high concentrations.

From the comparison of the diagrams of parametric sensibility for 
immobile ions in low concentrations obtained by means of the 
quasi-stationary method and the integral balance we conclude that 
the qualitative behavior is the same and we obtain numeric similar 
values and of the same order of magnitude although the integral 
balance method offers us more detail of the effect of the 
parameters which we cannot appreciate in the case of the quasi-
stationary.

From the comparison of the sensibility diagram that results from the 
integral balance method we can see the effect of the initial radius 
on the growth, result that was not obtained by the quasi-stationary 
method, thus showing the great sensibility of the integral balance 
method.



The nutrient uptake model
For ROOT GROWTHROOT GROWTH, we compute C = C(s(t),t) and r = s(t) unknown a priori as 

solution of a free boundary modelfree boundary model. 

Now, for NUTRIENT UPTAKENUTRIENT UPTAKE, we will compute C = C(so,t) as solution of a 
moving boundary modelmoving boundary model, where r = R(t) is known a priori. The situation is:

t = 0                               t = t

t = 0                               t = t



The mathematical model

We propose the 
following 
moving 
boundary 
model, we 
resembles 
the free 
boundary 
model:
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The last 
condition for 
R(t) is obtained 
assuming that:



A schematic diagram

r = R(t)

(3-i)
so Ro

C(r,0) = φ(r)

DbCr(R(t),t)+voC(R(t),t)=0

root



The nutrient uptake model solution

The solution is obtained by applying the integral balance method. 
Thus, (3-i) is integrated in variable r on the domain (so,R(t)) and it 
is proposed that:

With:

After elementary manipulations, we obtain:
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The functions Fi

The functions Fi
are given by:
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Computing the nutrient uptake

Once the concentration on the  root surface C(so,t) has been 
obtained we must compute the nutrient uptake by a system whose 
dominion is variable (By adding the resultant fluxes for every 
moment of time on the variable superficial area of the root)

Total nutrient uptake can be obtained from the following formula

where Jc(t) is the influx,      is the longitudinal root rate growth and U 
is computed from t = 0 to t = tmax
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Computing the nutrient uptake

First increment:
Second increment:

And, taking the limit when                   , we deduce:

where the first term represents the uptake for the initial root volume of 
length lo, the second term represents the uptake for the successive 
growing volume elements and                       is the root growth rate 
at instant t.
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Experimental method. Input data

Determination of soil parameters
Values of the initial concentration of nutrient in solution CR were obtained 
analyzing aliquots of solution moved from columns of soil balanced to 

field capacitance for 24 hours (Adams, 1974, Hesse, 1971). 
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The buffer power b and the 
diffusion coefficient D was 
obtained by means of the of 
Kovar and Barber technique 
(1990). The following figure 
illustrates the obtained 
relation between the 
interchangeable nutrient (K) 
and the soluble nutrient (K)

The diffusion coefficient D 
was obtained after  the buffer 
power had been computed 
by means of the following 
expression (Nye, 1966; 
Wietholter, 1983)):



Experimental method. Input data
where Dw is the nutrient diffusion coefficient of potassium in water 
(1.98x10-5 cm2/s, Parsons, 1958), (θ is the content of water (soil to 
field capacitance (θ =0.2) and f (dimensionless) is a factor of 
tortuousness or continuity (Porter, 1960). For soils varying from 
loamy To sandy and with 0.2<θ<0.4, f can numerically be 
considered equal to θ (Barraclough, 1981), hence the previous 
expression for the coefficient of diffusion results:

The flux speed vo was obtained dividing the total water taken for the 
plant W for a given  time (which was obtained subtracting the water 
lost due to evaporation from the total water lost due to 
evapotranspiration in each pot) by the media root surface during 
that same time:

where:
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Experimental method. Input data
Determination of root parameters
• The root growth rate k was obtained from the knowledge of the root length 

as a function of  time by means of the expression (assuming an exponential 
or linear growth, condition generally valid for vegetative growth (Claassen, 
1986)):

exponential growth

linear growth

• The root radius was obtained from the root length and the fresh mass root 
m by means of the expression (assuming a root density ρ=1):

• The inter-root distance was obtained from the volume of soil Vs and  root 
length l by means of the following expression (Barber, 1984 ):
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Experimental method. Input data
Determination of kinetic 

parameters
• Jm, Km, ka and Cu  were 

obtained through the 
analysis of K+

depletion curves in 
nutritive solution from 
which the roots 
absorbed potassium  
(Claassen and Barber, 
1974).
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The parameters ka, KM, Jm, Cu and E were obtained from the values of 
the concentration at initial time C(0), the first derived (α = dC(0)/dt), 
the second derived (β=d2C(0)/dt2) and the value of concentration at 
infinite (γ=C(∞∞∞∞)) which can be obtained from the graphic C versus 
time. The expressions obtained for ka, KM , Jm, Cu and E are:



Experimental results. Determination input data

The value of Cu is obtained from the values of ka, Jm and E from the 
consideration of a null flux when the concentration takes the 
threshold value under which there is no growth
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Nutrient uptake and the Finite Differences method

The solution of the mathematical model (3) is also 
obtained applying the dominion Immobilization or 
front fixing method and the subsequent application 
of finite differences. To immobilize the dominion 
[so,R(t)] taking it to the interval [0,1] we carry out 
the following transformation:
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The method of front-fixing and finite differences



Nutrient uptake and the finite differences method
The obtained equations (4) are approximated by finite differences, 

forwards in time, centered in the space for the second derived and 
forwards and back, for the derived first. For it, we propose:

When Bj < 0 (: B(y,t) value in the node (j,n)) the first derived is 
approximated with differences backwards and the first equation 
results:

When Bj > 0 the first derived is approximated with differences 
forwards and then the first equation results:
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Nutrient 
uptake and 
the explicit 

finite 
differences 

method

Now, our 
problem (4) 
Result in:
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Nutrient uptake and the implicit finite differences method
The problem (3) 
approximated by 
finite differences 
backwards in the 
time, centered in 
the space for the 
second derived 
and forwards 
and back 
according to the 
sign of B(y,t) for 
the first derived: 
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The equations of the 
problem (5) constitute 
a system of linear 
equations whose 
matrix of coefficients 
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The method of finite explicit differences that follows the 
moving boundary
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Results for a fixed domain method and four moving 
boundary methods

(†) Source: Kelly et al. 1992
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Competitive Ion Absorption

We study the 
problem when 
two ions are 
present and 
our interest is 
to analize the 
sinergismsinergism and 
antagonismantagonism
effects
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Future perpectives

Subjects in development

Simultaneous multispecie nutrient uptake contemplating effects of 
interaction in the transport as well as in the absorption 
(competence of ions for the transporter), problem already 
suggested by some authors (Rengel, 1993). 

• Moving boundary models for water uptake at one and two phases, 
of which some initial sketches have been presented through a 
free boundary model at one phase for water uptake in loamy soils

• Study of anaerobiosis of spherical aggregates of soil.



Water flux

The Darcy flux per root length unit is: (((( ))))v rk
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The continuity equation is

but (experimental)

then



Water flux
But deriving v with respect to r:
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Replacing in the previous equation

Now, our continuity equation results:
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Finally

That is a differential equation with fractional coefficients (n and b which are 
obtained  experimentally)



The moving boundary model for water uptake

In a similar way to nutrient uptake, we propose the following moving 
boundary model for water uptake:
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Solution: Front fixing and Finite Differences
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Water uptake. Predicted results for n = 2 (loamy soils)

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010

9940

9960

9980

10000

10020

Water potential profiles 

   0 days           30 days
  60 days          90 days
 120 days        150 days
 180 days

I ψψ ψψ
(y

,t)
I [

cm
]

y

                                                    

                                                    

                                                    

                                                    

                                                    

                                                    

0 20 40 60 80 100 120 140 160 180

9930

9940

9950

9960

9970

9980

9990

10000

10010

10020

10030
Water potential at root surface 

n = 2.0,                              b = 9.0
R(0) = 35.0 cm,             L(0)=1.0 cm
L' = 1.0*10-6 cm/s,           s0 = 0.05 cm
K0 = 1.0*10-6 cm/s,          ψψψψ0 = 10.0 cm
SMax = 2.0*10-5 1/s,          ψψψψ1 = 1.0 cm
ψψψψ2 = 750.0 cm,                ψψψψ3 = 17500.0 cm 

I ψψ ψψ
(s

0,t
)I 

[c
m

]
t [days]



Soil Aeration

The production of cultivations is affected by the insufficient 
oxygenation and the generation of carbon dioxide of microbial activity 
of the soils

Diverse authors have studied the mechanisms of the problems 
of aeration by means of simulation models in which differential 
equations are resolved on fixed dominions with varied initial 
conditions and contour.

Keeping in mind the presence of aggregates of diverse forms 
in the soils and their effect in the transference of oxygen a model of 
radial diffusion-consumption in spherical aggregates physical and 
biologically homogeneous is proposed.

The diffusion in spherical aggregates is described by means 
of the Fick law with term of constant absorption and the anaerobiosis
of an isolated aggregate can be estimated on the basis of certain data

Following the physical process that originates a mathematical 
model of free boundary for the diffusion and the consumption of 
oxygen in a spherical media is detailed 



Soil Aeration

First (diffusive stage) oxygen is diffused in such a way that part of  it 
is absorbed and eliminated from the diffusion process. The 
concentration of oxygen in the fixed surface of the media is fixed. 
The first phase continues until it reaches a stationary state in
which the oxygen doesn't penetrate any deeper in the media 
(second phase: stationary stage).

The provision of oxygen is stopped and the media surface is isolated 
so that no oxygen can enter or leave. The media continues 
absorbing the inner available oxygen and therefore, the free 
boundary that establishes a separation between the zone of 
positive concentration and the zone of null concentration of 
oxygen respectively (and that marks the width of maximum 
penetration in the stationary case) begins to go back towards the 
isolated boundary (third phase: consumption stage).

The problem consists in localizing the movement of the free boundary 
and computes the distribution of oxygen in the spherical media.



Diffusive stage
Diffusive stage: Consist in to compute the transient concentration C = 

C(r,t) and the boundary of separation s = s(t) that satisfies the 
following problem of free parabolic boundary 
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Stationary stage
Consist in deciding the stationary concentration C = C(r) and the free 

boundary s = s(t) that satisfies the following problem of free elliptic 
boundary
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Consumption stage
Consist in to compute the transient concentration C =C(r,t) and the 

boundary of separation s = s(t) that it satisfies the following 
problem of free parabolic boundary

Where: 
Cini >0  is the initial concentration of oxygen in the diffusive stage
Cext >0 is the external concentration of oxygen in the diffusive stage,
S = S(t) is the free boundary in the diffusive stage  m,
s = s(t) is the free boundary in the stage of consumption  m,
(C*,s*) is the solution of the stationary stage.
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Consumption stage
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Stationary stage solution 
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A numeric algorithm based on the discretization method of lines is 
presented to approximate the solution of the diffusive stage. Carrying 
out the change of variables

The diffusive problem results:
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Stationary stage solution 
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Carrying out a new change of variables:

The diffusive problem results
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Stationary stage solution 
Fixing a step of constant time k, for each n = 0,1,2,... we define
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The time derivate is approximated backwards

and the differential equation

adopt the following discrete form by using the method of lines

Defining                and           the real function given by:



Stationary stage solution 
the diffusive problem is replaced by the following succession of

problems of free boundary
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Algorithm for the diffusive stage
Initial data

k, step of the time 
E, tolerance.

s1 and s2 , initials values of the free boundary.
First step

n = 1
s = s1

Subroutine to solve the problem by means of fourth order Runge -Kutta 
method (denoting the solution u = u(р)).

u1(р) = u(р)
If                                  then it ends.

Beginning of the iteration
n = n + 1

s = sn
Subroutine to solve the problem  by means of fourth order Runge -Kutta 

method (denoting the solution  u = u(р)).
un(р) = u(р)

If                                   then it ends

.
End of the iteration
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