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Root growth. A short introduction
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Root growth introduction

The germination results in the development of shoots upwards and
roots downwards. As the roots move through the soil they find a
growing source of ions and water




Root growth introduction

The roots grow in the path of minor resistance and they extend in the
porous spaces of soil. The roots change their directions when they
find Peds which are aggregates of resistant soil
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Root growth introduction

Besides, following the path
of minor resistance, roots also grow
where the media is better. Here the
roots avoid the dry and arid soil
while they grow in the moist and
fertile soil

As the roots absorbs and
dries the source of water and
adjacent ions to them, fortuitously
extends through the root zone. In
the majority of the annual and
horticultural cultivation, the radical
systems will penetrate to a depth of
1 meter or more

Root enviromment



Root growth Introduction : Nutrient uptake

The root incorporates adjacent ions, then it is important that
ions move towards the root. As the root grows through the
soil absorbs ions and water in direct contact with it.
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Root growth introduction

As the water adjacent to the root is absorbed, a gradient of potential
water is established which cause the water to move slowly towards
the roots transporting ions. The process of ions moving towards the

root with the movement of the water is called the CONVECTIVE
FLUX

The convective flux depends on the ion concentration in solution and
on the amount of water moved towards the root which is
proportional to the plant respiration

The ions in soil solution diffuse slowly towards the root whether exists
or not water moving towards it. The process is denominated
DIFFUSIVE FLUX

ONLY IONS IN THE ROOT SURFACE ARE AVAILABLE
FOR UPTAKE




Root growth introduction

INTERSECTION
(nutrients which the
plant finds by direct

contact)

CONVECTIVE FLUX
(nutrients transported by
water movement)

NUTRIENT
ABSORPTION

DIFFUSIVE FLUX
(nutrient movement
through soil solution)




Root growth Introduction

ROOT DISTRIBUTION

The plant capacity to absorb water and
ions is related to root length (area
density of the root surface). Uptake

is based on ions availability and Depth {crr
0.0

root length ya0g
UPTAKE = lons availability by root 75

length (density of superficial area) . 1,117

432
224

ROOT LENGTH 568
What total root length has a plant as o0 348
wheat in 1 acre to a depth of 75 cm? .0 -
Excluding hairs, the total length is 50.0
5830 miles = 9329 km. . 140

UPTAKE OF WATER AND IONS IS DEPENDENT ON ROOT LENGTH
(SURFACE AREA DENSITY) AND AS IT INCREASES, THE
ABSORPTION OF WATER AND IONS INCREASES TOO




Models related to root growth

The crop functioning optimization is obtained through models
simulation which predict the system behavior or subsystem during
the growth period

System root
growth and
proliferation

Transport and
water uptake

ransport anc
nutrient
uptake



Root growth, water and nutrient uptake models

ransport and
water uptake

ransport an

nutrient
uptake

)

Water flux models with a
sink represented by lhe

root
Van den Honert, 1948;
Gardner, 1960; Molz, 1981

System root
growth models
and their
proliferation

Statistical empirical

Models
Response function
Ross, 1981, Yerokum 1990,
Pate, 1979

Mechanistic models
Mathematical description

of processes
Nye, 1969;Claasen-Barber,
1976; Cushman, 1979

Nutrient uptake balance

Intermediate
Wolf, 1989; Borg, 1990

Arquitectonic Models
Grant,1993; Shibusawa,
1992; Bengough, 1992

Termodynamic Models
McCoy, 1991

Continuous proliferation
models with differential
equations

Brugge, 1985; Subbaiah,
1993




Transport and absorption of nutrient.
Mechanistic models

FIXED DOMINION
Claasen-Barber, 1976 Transport equations
Cushman 1979,80,82 - coupled with

Silberbush, 1983 absorption kinetics

Barber, 1984

Root sink

Total absorcion =
VARIABLE DOMINION NO =convective flux +

COUPLED - difussive flux
Nye, 1969, 1977 Available root
Hoffland, 1990 Volumen vary with

root length

Mechanistic
Models

Analytical solution
Average

VARIABLE DOMINION NO concentration =
COUPLED stationary case
Nye and Tinker, 1977 Available root
Smethurst, 1993 volume with
variable depletion
zone



moving boundary
problems
precisely the coupling between
nutrient and water

absorption and root growth

transport,

Free and moving boundary models

describe more

Quantitative nutrient
uptake model

Quantitative moving
boundary model for
multispecie absorption

Course
Program




What Are The Free Boundary Problems?

Although you perhaps no imagine it, you live surrounded by
phenomena that involve problems of "free boundary”, which go
from:

the small things of daily life as:
the way in which a cube of ice goes changing form and size in a
water glass, or the way in which a jet of milk is spread in a cup of
coffee

to varied and important industrial processes like
Steel continuous casting, freezing and defrosting of food,
solidification of plastics, solidification of pavements, etcetera.

as well as medical applications
diffusion-consumption of oxygen in live tissues, for the treatment
of tumors by means of radiations.

To agronomical applications
Root growth



But, what are the problems of free boundary, and
why do we call them so?

Nothing better that analyzing an example. If an ice bar contained in
a receptacle is heated in one of its ends, it will begin to melt
from an end and it will go advancing a "front of fusion”. In every
moment later it will be a zone still frozen (the more distant of the
heat source), other in liquid state, and a surface of contact
between both regions, (or which is the same a boundary that
separates them). With time the liquid phase will occupy a bigger
space each time, for which such boundary will move and

fortuitously changing form.
Fusion front

Liquid zone (\‘/ Frozen zone

e

The free boundary name comes of, in each moment; the location
and form of this boundary are unknown.




But, what are the problems of free boundary, and
why we call them so?

The physical-mathematical problem consists in predicting which will
the position of that boundary be at every moment, and which will
the temperature in each point of the bar be.

This problem (denominated Stefan problem) constitutes only one of
the types of free boundary problems, and it appears in industries
such as:

Steel (steel continuous casting),

Refrigerator (freezing or defrosting of foods),

Metallurgical (solidification of binary alloys, metals welding),
Plastic (solidification of diverse products)

Nuclear technology (prevention of accidents due to

fusion of radioactive material)

Civil engineering (solidification of moist soils)

Solar energy (architecture), etcetera.



Other classes of "free boundary"”

that don't correspond to a front of change of state, are those which
appears, for example, in problems of:

Chemical engineering:

diffusion-gasoline reaction-solid, processes of oxidation, poisoning
of catalysts.

Hydraulics:
case of the porous dike.
Ecology:

propagation of fires, propagation of stains of petroleum in water,
growth of species, storm fronts, melting of glaciers

Electronic:
semiconductors.
Agronomy:
root growth of crops, nutrient and water uptake, anaerobiosis



Introduction to the Stefan problem and its
applications

In 1831, Lamé and Clapeyron studied the problem of the solidification
for cooling of a liquid globe (earth) in the following way. The earth is
supossed to be a sphere that verifies the following hypothesis:

1) originally it was liquid and composed of a single substance, which it
found to the temperature of fusion

2) it cools in the space and it solidifies from the exterior surface
inwards, which rapidly takes a media temperature constant, 6_< 6,

3) the solid cortex already formed in our days has not a considerable
thickness compared to the terrestrial radius, and then it is obtained
that:

a) the thickness of the solid part that covers our earth increases
proportionally to /t , where t is the time since the beginning of
solidification

b) the knowledge of the age of the solid part of the earth depends on
numerous coefficients that can be easily obtained from the
experience. These coefficients depend only on the solid phase.



The Lame-Clayperon problem

Really, below the hypothesis given previously, Lamé and Clayperon
solves the problem of the solidification of a material partly-infinite,
represented by x > 0, that initially is in liquid phase to their
temperature of fusion and that in the extreme x = 0 is cooled to a
temperature 6, lower to that of fusion.

Solid phase 0 =0(x,t)

X =s (t)
Liquid phase 0 =6,
Solid phase to Liquid phase to
0 = 0(x, t) 0 =6,
| | <
x=0 X = s(t) The earth center is

X = o




The mathematical model of Lamé and Clayperon

From a mathematical viewpoint, the problem can be outlined in the
following way: To find the function s = s(t) (free boundary that
separates the solid phase from the liquid phase and that it is to
constant temperature) defined by t > 0 with s(0) = 0, and the
temperature so that it satisfies the following conditions:

0 6=0(x,t) if 0<x<s(t), t>0
|6, if s(t)<x, t>0
so that it satisfies the following conditions:
00 0°0
i) pc— =Kk , 0<x<s(t), t>0
) p o ox? (t)
ii) 6(0,t) =0, > 6,, t>0
q ili) O(s(t),t) = 6,, t>0
o k69(s(t),t) =pkds(t), t>0
oX dt
L v)s(0)=0




Properties of free boundary problem

It must be remarked that the problem is named to a phase because, in
our case, the liquid phase finds to constant temperature and equal
to the temperature of the phase change

The Stefan problem is not linear in spite of the apparent linearity of
the conditions i)-v). In effect, if (iii) it is derived respect to t, it is
obtained that:

00(s(t), t) ds(t) N 00(s(t), t) _

0, t>0
OX dt ot

then, the Stefan condition (iv) is transformed to

% [ae(s(t), t) ]2 . 20(s(t),t) _ Ak 8°6(s(t),t)

ox ot c ox?

which indicates that the problem is not linear.



Types of boundary problems

The Stefan problem is a free boundary problem for the heat equation
of the explicit type. In general, the problems that are outlined for the
heat equation or diffusion are classified in the following way

( fixed

moving
boundary problems

free f-:-xplfc!t type
I implicit type

The fixed boundary problem for the heat equation (diffusion) are those
that are studied in the dominion (x;,x,) x (0,t).

The moving boundary problems for the heat equation (diffusion) are
those that are studied in the dominion (s.(t), s,(t)) x (0,T) with s,(t)
< s,(t) functions given in (0,t), that is to say, that the space
dominion of the unknown functions is variable with time by means
of a law of movement known a priori



Free boundary problems explicit and implicit

The free boundary problems for the heat equation are those for
which the space dominion of the unknown functions to compute
is variable as a function of time through a movement law
unknown a priori (Lamé and Clayperon)

The free boundary problems are explicit or implicit if the free
boundary velocity appears explicitly in the conditions that are
imposes on that boundary, e.i, if s = s(t) appears explicitly in the
condition iv). Instead, if this velocity is not present, the free
boundary is implicit (difussion-consumption of oxigen in alives
tissues, anaerobiosis)



Bibliography on free and moving boundary

Bibliography (Database)
on moving and free
boundary problems for the
heat-diffusion  equation,
particularly regarding the 2000
Stefan and related
problems contains 5869
titles referring to:

=
al
o
o

588 scientific Journals,
122 books,

88 symposia

30 collections, -
59 thesis and

247 technical reports.

1000

Numbers of titles

] ] 0
It trles to glve a 1831  1889-1891 1901-1930 1931-1950 1951-1960 1961-1970 1971-1980 1981-19901991-1998/9

comprehensive account of Period (years)
the western existing

mathematical-physical-

engineering literature on

this research field.



The free boundary for root growth

Many methods exist for studying the mechanism involved in
nutrient uptake. These methods model the plant-root system by
use of the partial differential equation for convective and
diffusive flow to a root

Claassen and Barber, 1966;
Nye and Marriot, 1969;
Cushmann, 1979, 1980, 1982.

In general, these models have not considered computing root
growth, but rather they have assumed young roots to be
growing at exponential rates

In the past, various models have been proposed and analyzed with
the purpose of interpreting growing process as a free boundary
problem for the heat-diffusion equation

Lame and Clayperon, 1831; Stefan, 1889;
Carslaw and Jaeger, 1959; Crank, 1975;



The Root Growth Model. Model assumptions

The soil is homogeneous and isotropic,

Moisture conditions are maintained constant

Nutrient uptake occurs at root surface

The roots are smooth cylinders,

Uptake is described by the Michaelis-Menten equation,

The nutrient transport occurs via convection and diffusion in the
radial direction only

Parameters (Jm) and (Km) are independent from the velocity of soil
water at the root (vo)

The diffusion coefficient (D) is independent of flux,
D and the buffer power b are independent of concentration,

The root system parameters are not changed by root age (k =
Jm/Km = constant),

The velocity of water is not affected by nutrient concentration,

Production or depletion of nutrient by microbial or other activity is
null,

All parameters D,b,k are independent from temperature,
The net uptake of nutrient is totally available for growth,
Root hairs do not affect nutrient uptake.



Root growth model

With the above assumptions, the root growth model is given (in

cylindrical coordinates) by:

)Dazc SIE ot 6C, s(t)<r <R, O0<t<T
or? r or

if) C(r,0) = o(r), s, <r<R
iii) C(R,t) =C,, O0<t<T

aC(s(t), 1) _ KC(s(t)t)

7 . v) Db 5 +V,C(s(t), t) = . k.C(s(t), ) E =

Jn
.k, C(s(t),t) ds(t)
vi) kaC(s(t),t) = aC(s(t),t) 0<t<T
1+
Jm

Vi) s(0)=s,, 0<s, <R




A schematic diagram for root growth model

A schematic diagram of free boundary problem is given in the
following outline:

C(R,t)=C,

C(r,0)=e(r)



Analytical solution. The quasistationary method

In this method it is assumed that the soil concentration is that
corresponding to stationary case in the interval (s(t),R). Then the
problem is reduced to solve the equation:

DC"+D(1+80)%=0, s(t)<r<R, O0<t<T

With the conditions (ii, iii, iv and v).The solution of the problem by low

concentrations (k,C(s(t),t)/(1+k,C(s(t),t)/J,) =k,C(s(t),t)) is given by:

C(r,t) = B(t) - °:(8t) . s(t)<r<R, t>0
Where: I [(k-v,)Cg —E] _ oft)
<ﬂﬂ—[Db] : B =Co+ 2,

N (k=v,)| 1 1
S(t)e+1 Db ;(t)s Rs
[(k—v,)Cq —E] [ 1 1]

V°+(k—v°)[ 1 1][r@t) R
s ° s’(t) R°

(o]

o(r) =Cpg -




The quasistationary method

And s(t) is the only solution of the following Cauchy problem:

d:it) =F(s(t)), t>0
s(0) =s, €(0,R)

With:
_Kra_ _[1+0,G(s)] _da (sY
F(S)—a[1 o, (H(s)], H(S)_[1+a1G(s)]’ (3'(3)—3{1 (R)}
E " k-v) _ _E G,
%=vsC’ Z vs  %ke.7c.
CR

C(s(t),t) =

(=C(s(t))), t>0

H(s(t))




The quasistationary method

Let y be the parameter defined by: y = E =% itean prove

that if (k-v,)Cr o,

<1 =  C(s(t)) <C; then absorption power
k O v, and there is no counterdiffusion

vyis ¢+ =1 = C(s(t)) remains constant
>1 = C(s(t)) >C; because k is small and root

can not absorbs all the nutrient and
there is counterdiffusion

1 _1+oR
and a, 1+aR

= s(t)> 0




Concentracion sobre la raiz (x10” mol/cm®)

Quasi-stationary method solution

4. .6
Tiempo (Dias)
0.40

0.35
0.30
0.25
0.20

0.15

Radio raiz (cm)

0.10
0.05

0.00
0 2 4 6

Tiempo (Dias)

10



The quasistationary method
Effect of system parameters
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6

0.5

Root surface concentration to 10 days (x10” mol/cm®)

Change ratio



The quasistationary method
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Approximated solution. The integral balance method

To solve the problem (1- i, ii,iii,iv, and vi), i.e., C = C(r,t) (specially
C=C(s(t),t) and the free boundary r = s(t)) we integrate the differential
equation (1-|) in r on the domlnlon (s(t),r):

jC(r t)dr =D jc (r, t)dr+D(1+s)_[

s(t)

s(t) s(t)

And it is proposed that: [C(r,t) = o(r)[1+B(t)(R —r)]|

That verifies

Replacing C(r,t)

Rj C(r,t)dr

s(t)

we obtain:

C(r

,0)=0(r) & B(0)=0

C(R,t)=C, < o(R)=C

C.(r,t) dr

2) <

(R

j C,(r,t)dr =D[C, (R, t) - g(o(t))] +

s(t)
+D(1+s-;)[C a(t) j CrY

R s(t) r

s(t) =f(s(t)), t>0, s(0)=0

\

dr} t>0




The balance integral method solution
Replacing o(r)=Cy +A[1—($) ] in 2) we obtain the following ordinary

differential equations system:

deBI—?:):H(FZ+F3+F4+F5+F6+F7), B(0)=0
|as) _1[, - -
o - { o(s(t)[ 1+B(t) (r - s(t)))]} s(0)=s,



The balance integral method solution

Where: A=_E-(k-V,)Cq

A, - {( C. +A)[R - s(t)] + AR®s!"®)(t) - AR}

(1-¢)
€a(2-¢) _ 2
A2= CR+A(R2—SZ(t))+ARS (t) AR
2 (2-¢)
F=_ D
RA, - A,

F,= E—cRﬁ(t)—i[q>(s(t)[1+ls(t)(R—s(t»](k—vo)—E],

R
o(s(t)[1+B(t)R - S(t))]
s(t)

F3=(1+e)%—(1+ g)

1
F, = (1+¢)(Cy +A)(1+B(t)R)[E—E],

F; = -(1+¢)B(t)(Cy +A)In( ()J

e AB(t)R‘[ 1 —i],

F, =
s*(t) R

F, =-AR*[1+ B(t)R][s‘J(t) - R; ]



The balance integral method solution

Low concentrations

2,5

= = N
o Ul @)

Root radius to 12 days (cm)

o
o1

0,0




The balance integral method solution

High concentrations

0.40

0.35

o
w
o

0.25

0.20

Root radius to 12 days (cm)

0.15

0.10

Change ratio



Root Growth models conclusions

From the comparison of the theoretical results of the model for the
effects on the growth in low and high concentrations we conclude
that: absorption kinetic in low concentrations is more efficient than
the same mechanism for high concentrations.

From the comparison of the diagrams of parametric sensibility for
immobile ions in low concentrations obtained by means of the
quasi-stationary method and the integral balance we conclude that
the qualitative behavior is the same and we obtain numeric similar
values and of the same order of magnitude although the integral
balance method offers us more detail of the effect of the
parameters which we cannot appreciate in the case of the quasi-
stationary.

From the comparison of the sensibility diagram that results from the
integral balance method we can see the effect of the initial radius
on the growth, result that was not obtained by the quasi-stationary
metﬂog, thus showing the great sensibility of the integral balance
method.



The nutrient uptake model

For ROOT GROWTH, we compute C = C(s(t),t) and r = s(t) unknown a priori as
solution of a free boundary model.

Now, for NUTRIENT UPTAKE, we will compute C = C(s_,t) as solution of a
moving boundary model, where r = R(t) is known a priori. The situation is:

| {




We propose the
following
moving
boundary
model, we
resembles
the free
boundary
model:

The last
condition for
R(t) is obtained
assuming that:

The mathematical model

( 2

i) Da? b 14+ Yoo aC=6C, s, <r <R(t),
or r Db jor ot

if) C(r,0) = o(r), s, <r<R,

iii) Db

acazl(rt),t) +v,C(R(t),t) =0,

: oC(s_,t) k,[C(s,,t)-C,]

J
IO
v) R(t) =R, /I(t),

m

I_(1+kt) [linear growth]
with: I(t)=<o0r
1,e" [ exp onential growth]

O0<t<T

O0<t<T

O<t<T

Vsoil|t=t = V50i||t=0 -V

root |t=t

nl(t)[Rz(t)—s§]= nl, [Rf, —sf,]—nsf, [It)-1,]




A schematic diagram

/ r =R(t)

A/
DbC (R(t),t)+v,C(R(t),t)=0
(3-0) %

sof R, F

C(r,0) = ¢(r)




The nutrient uptake model solution

The solution is obtained by applying the integral balance method.

Thus, (3-i) is integrated in variable r on the domain (s_,R(t)) and it
is proposed that:

2
r
C(r,t) = o(r)| 1+B(t) (1_R(t))

With:
o(r) = Cpe™®™, g o
After elementary manipulations, we obtain:
dp(t) _ F,(R(1),B(t)) 3(0) = 0
dt F,(R(t))
<
[
R(t)=R °
RO =R, 1o




The functions F,

The functions F,
are given by:

([eeR(t) _ esso]

2 [e""(eR(t) - 1) e™(es, -1)]

FR(M)=Cee ™  °

R(t) g

1 [eeR(t) (e°R*(t) - 2eR(t) +2) — 6™ (e?sZ — 2es, + 2)]

+
[ R*(t)

83

F,(R(t),B(t)) =G, +G, +G, +G, + G,

G,(R(t),B(t)) = DeCe*®-R® 4 DeC(s,, t) -

k

ka  [C(s,,t)-C,]
b

ka [C(so)’ t) - Cu]
J

m

1+

2
—&(R,-s,) _So
C(s,,t)=Cre [1+[3(t)(1 R(t))]

G,(R(t),B(t)) =D(1+¢

G, (R(1),B(1)) = Ifz‘z) [0(1 re,)e

2BOR) o s
R

G, = [0(1 +e,) (e +eB(t) - I-'f((tt))

G, (R(t),B(t)) =

0

600 [R5() ° ]+4320

322560[ )-s ]

—kR(t)
2(1, +kt)

with R(t) =

-2|i(t)]cRe-eRo [

eR(t) _ 48,
) ZB(t) ( 8) CRe_eR" [e e :l
R(t) \R(t) €

e (eR(t) - 1)) —e™(es, -1)]

2
€

[ (£%R?(t) - 2eR(t) +2) - ™ (" — 265, +2)

[RE(t)-

83

]] C e .

-Inm+e[R(t)—so]+—[R2(t)—S§]+i[R3(t)—Si]+i[R4(t)_sﬁ]+-

3 280 (t)-s ]+

3265920[ )-s ]




Computing the nutrient uptake

Once the concentration on the root surface C(s_t) has been
obtained we must compute the nutrient uptake by a system whose
dominion is variable (By adding the resultant fluxes for every
moment of time on the variable superficial area of the root)

Total nutrient uptake can be obtained from the following formula

t t

=t max tmax
U=2rs, [ J.(t)dt+2ms, |
t=0

t=0

t=t

[ T uw dt}i(t) dt

k,[C(s,,t)-C,]
k,[C(s,,t)-C,]
J

m

J.(t) =

1+

where J_(t) is the influx, it) is the longitudinal root rate growth and U
is computed fromt=0tot=t__



Computing the nutrient uptake

First increment: AU, =2xrs | J At
Second increment:  ,y _ ong | J At + 278 AlJ At
AU, =2ns | J,At +2ns Al J,At +2ns_Al,J,At

AU =2zns | J At+2ns Al J At +2ns Al J At +..+2ns Al J At

AU = Z AU, = 27s, [Z |, J.At + 2 ALJ.At + 2 ALJ At +.. + 2 AInJiAt]
i=1 i=1 i=1 i=2 i=n

And, taking the limit when At » 0, we deduce.

tmax I(tmax ) | tmax
AU =27s, | j J(s)dt +2ns, I [ IJ(S)dS}C"(t) =

0 l, t
tmax tmax tmax °
=2ns | j J(s)dt +2zs j [ j J(s)ds}l(t)dt
0 0 t

where the first term represents the uptake for the initial root volume of
length |, the second term represents the uptake for the successive
growing volume elements and I(t) = dI(t)/dt is the root growth rate
at instant t.



Experimental method. Input data

Determination of soil parameters

Values of the initial concentration of nutrient in solution C; were obtained

analyzing aliquots of solution moved from columns of soil balanced to
field capacitance for 24 hours (Adams, 1974, Hesse, 1971).

The buffer power b and the 1200
diffusion coefficient D was =
obtained by means of the of < ™
Kovar and Barber technique 2
(1990). The following figure 3
illustrates the obtained s o0
relation between the §
interchangeable nutrient (K) ji_a 800
and the soluble nutrient (K) v
700
The diffusion coefficient D 4 e 50 i 80 %
was obtained after the buffer K soluble (mg/kg)

power had been computed
by means of the following D, fo
expression  (Nye, 1966; D= b

Wietholter, 1983)):




Experimental method. Input data

where D, is the nutrient diffusion coefficient of potassium in water
(1.98x10-5 cm2/s, Parsons, 1958), (0 is the content of water (soil to
field capacitance (6 =0.2) and f (dimensionless) is a factor of
tortuousness or continuity (Porter, 1960). For soils varying from
loamy To sandy and with 0.2<6<0.4, f can numerically be
considered equal to 6 (Barraclough, 1981), hence the previous
expression for the coefficient of diffusion results:

D, 6
b

The flux speed v, was obtained dividing the total water taken for the
plant W for a given time (which was obtained subtracting the water
lost due to evaporation from the total water lost due to
evapotranspiration in each pot) by the media root surface during
that same time:

D=

w W(InS, -InS,)
(tz_t1)é (32_31)(t2_t1)

where: S 1




Experimental method. Input data
Determination of root parameters

The root growth rate k was obtained from the knowledge of the root length
as a function of time by means of the expression (assuming an exponential
or linear growth, condition generally valid for vegetative growth (Claassen,

1986)): « — Inl(t) —Ini(t,)
-t
K — I(t) —I(t,)
t-t,

exponential growth

linear growth

The root radius was obtained from the root length and the fresh mass root
m by means of the expression (assuming a root density p=1):

S =

(o]

Jzor

The inter-root distance was obtained from the volume of soil V_ and root

length | by means of the following expression (Barber, 1984 ):

R =

\'/

S

el




Experimental method. Input data

2,0x107

. . . . ; | ! | ! | ! | ! I
Determination of kinetic K- Depletion curve for maize

parameters '\Tilkara Funks to 28 days/l}

- J., K. k,and C, were | | | | |
obtained through the
analysis of K*
depletion curves in
nutritive solution from
which the roots
absorbed potassium
(Claassen and Barber,
1974).

1,5x107

1,0x10”7 j \
5,0x10” j 1

0,0

(mol/cm’)

Concentration

i i i !_'.'"-——.
0 5000 10000 15000 20000 25000
Time (sec)

The parameters k_, K, J,,, C,and E were obtained from the values of
the concentration at initial time C(0), the first derived (a = dC(0)/dt),
the second derived (B=d?C(0)/dt?) and the value of concentration at
infinite (y=C(«)) which can be obtained from the graphic C versus
time. The expressions obtained for k_, K, , J,,, C, and E are:



Experimental results. Determination input data

(C

2
0_1)

Y

E = o , ='YB
YR ETE
o Y o Y
5G] A
Ky =7 e a = L

Blcee
o’y

1

=

BC,

CO

a2

)

i

BB,

)

The value of C is obtained from the values of k_, J., and E from the

consideration of a null flux when the concentration takes the

threshold value under which there is no growth

kaCu

1+ —kac“
J

m

-E=0

=




Nutrient effects on
quality of food

Too much nitrogen and low phosphorus can * "
adversely affect fruit appearance and quality.
The oranges on the left and right received high
levels of mitrogen fertiliser and no phosphorus.
This caused the fruit to be misshapen and the
rind to be coarse and roughly textured. The
fruit in the centre received a moderate but

sufficient level of nitrogen and adequate
phosphorus.

The two outer cut dissected fruit show
thickened rinds, open centres and coarse flesh,
caused by high nitrogen and no phosphorus.
The thin-skinned fruit in the centre received

adequate phosphorus and a moderate nitrogen

level. o HE




Nutrient uptake and the Finite Differences method

The method of front-fixing and finite differences
The solution of the mathematical model (3) is also

obtained applying the dominion Immobilization or y = r-5So ., t=t
front fixing method and the subsequent application R(t)-s,
of finite differences. To immobilize the dominion ¥ (y,t) = C(r,t)
[s.,R(t)] taking it to the interval [0,1] we carry out
the following transformation:
) D¥, (0t |D+e)+s, R(t)y+[R(t) s, |R(t)y?
[R()-s,J [R)-s.Fy+s,[Rt)-s,] |
Y (y,t) =¥ (y,t) 0<y<1 O<t<T
i) ¥(y,0) = (IR, - s,] +5,), 0<y<1
iii) — ¥ (1,t)+v ¥(1,t) =0, 0<t<T
4 i) ~r sy BB+ VoL
k. [¥(0,t)-¥
iv) Db ¥ (0,t)+v, P(0,t) = a[ 0.9 “] , 0<t<T
[R(t)—so] Y 1+ka [‘I’(O,t)—‘I’u]
Jm
I
v) R(t)=R_ |—
\ ) R(t) o,/l(t)




Nutrient uptake and the finite differences method

The obtained equations (4) are approximated by finite differences,
forwards in time, centered in the space for the second derived and
forwards and back, for the derived first. For it, we propose:

D A(t)

R(t)-s,’ A=R0 _s,

A(t) =

D, +s, Ri(t)y +R,()Ri(t)y?

=E= R (t)y +s.R,(t)

When B, < 0 (: B(y,t) value in the node (j,n)) the first derived is
approximated with differences backwards and the first equation

results:
X = [B“A—t—ZA“ at 1]\11;‘ [A“ at ]T [A" At -B] §‘]‘P[1
Ay Yy J

Ay N Ay? |

When B; > 0 the first derived is approximated with differences
forwards and then the first equation results:

o B Y N ] ) 7 G LR
ay T Ay LAy’ Ay Ay



Nutrient If B, <0
uptake and i) W' = B"it-zA:itzm P+ Al — At ¥, +H A — Al _pra v,
= = Ay Ay Ay | Ay T
the explicit Ay
differences If B, >0
method e =B A _oar A Lqlgnyfan AL lgn oA A o At lgn
‘ ' Ay v Ay’ Ay* Ay
2
with at<—2Y v
NOW, our 4) . 2A; +BjAy
problem (4) i) ¥(y;,0) =o(y;[R, —s,1+s,), V]
Result in: iii) Y(1,£") = D=0
Db—v_AyR,(t")
iv) a(t")¥2(0,t") + B(t")¥(0,t") +y(t") = 0
with: a(t"):vo—A(tn)b<o, Y(t") = (K, - ¥ )A(tn)b P(Ay,t") +J_ P,
p(t") = 2P gy, 1) +(vo - A‘;"’b)(xm -¥,)-J,
Explicit Finite = y
Differences v) R(t") =R, I(It") vn.




Nutrient uptake and the implicit finite differences method

The problem (3)
approximated by
finite differences
backwards in the
time, centered in
the space for the
second derived
and forwards
and back
according to the
sign of B(y,t) for
the first derived:

Implicit Finite
Differences

The equations of the
problem (5) constitute
a system of linear
equations whose
matrix of coefficients
results to be a
tridiagonal matrix

I) \P:l _ |:Bn+1 it An+1 AAt
y y’

_|:AI11+1AAt2
y _

] ‘_Pn+1

P+ [1 +2A]
— [ A1"+1 At 1 At

Ay? AY]
5) ) ||) ‘I’(y,;o) = (P(yj[Ro _50] + so)’
Db
Db -v_Ay R, (t™")

n+1

g a1 At |
A

+ Bn+

j+1

T(1, tn+1) _

P(0,t™") + P(1,t™") =

‘_Pn+1

P(1-

1 2An+1At_Bn+1 At
Ay* Ay

:| ‘_Pn+1

n+1 At
Ay?

Bn+1 At
Ay

] \IJn+1
Vj
Ay, tn+1) — 0

K [¥(0,t") -, ]

o

An+1b

s

V_A
v) R(t") =R, , , Vvn.

I(t")

\

A™'b k,[¥(0,t") - ¥, |

e

Ay

m

|




The method of finite explicit differences that follows the

moving boundary

A

6)

Finite Differences
with variable grid

v) R(t") =R,

i) ¥ =D (AAt)2 P+ |+ [1 -2D (AAt)Z ]‘I’;‘ -
y) - B y
+B, ZiAty W -,

i) ¥; =¥(y;)=oly,), s,<y<R,
Db

(o]

¥Y(R(t) — Ay, t"), 0<t"<T

i) BR(E),t") = =

: Db | _, n
iv) [vo —A—y]‘l’ (s,,t") +

Db

Db
—¥(s, + Ay, t") +

[vo ——][km —‘Pu]—Jm]‘I’(so,t“) +
Ay

+

k- ‘I’u]%‘l’(so +Ay, t")+J ¥, =0
5 Ay

IO

I(t")’

vn.




Results for a fixed domain method and four moving

boundary methods

Predicted uptake (mmol / pot)

Observed Barber- Moving Moving Moving Moving
Uptake Cushman Boundary Boundary Boundary Boundary
Model Model Model Model Model

lon (mmol / (Integral (Front fixing / | (Front fixing / (Dom. Var. /
pot Balance) Explicit Finite | Implicit Finite | Explicit Finite
Differences ) Differences) Differences)

(1) (%) (*) (*) (*) (*)
Error Error Error Error Error

Mg 1.617 0.625| 61.3 | 0.680 | 57.1 0.18 88.9 0.763 | 52.8 | 0.687 57.5
K 6.663 6.285| 5.6 6.653 | 0.15 | 7.33 9.96 7272 | 915 | 0582 | 913
P 1.332 1.185 11 1.302 | 2.25 | 1.41 6 1409 | 5.84 | 0.683 51.5

(1) Source: Kelly et al. 1992
(*) Percent relative error




We study the
problem when
two ions are
present and
our interest is
to analize the
sinergism and
antagonism
effects

Competitive lon Absorption

3) «

I(t)’

f 2
) D251 Difq, YeSo |9C 00 o . R(t), 0<t<T
or Db, )or ot
ion1 Jii) C,(r,0) = o,(r), s, <r<R,
iii) D,b, w +v,C,(R(t),t) =0, 0<t<T
r
f 2
iv)D, 2 G2 4 Da[ 4, Y80 |00, _0C; o\ _R(t), 0<t<T
or r D,b, ) or ot
ion2 qv) C,(r,0) =o,(r), s, <r<R,
vi) Dzb2w+vocz(R(t),t)=0, 0<t<T
r
( aC.(s.,1) K. [Ci(So,t) = Cui]
vii) Db, — 2" 4+v _C.(s,,t) = . ul
o or 1 1+ka1[c1(so’t)_cu1]+ka [CZ(So’t)_Cuz]
Jm1 Jm2
<
oC,(s,,t) k z[cz(s ,t)-C 2]
viii)D,b, —2—="" +v_C,(s,,t) = 2 2 -
2 2 1+ka1[c1(so’t)_cu1]+ka [Cz(so’t)_CUZ]
L Jm1 Jm2
ix) R(t) =R, , O0<t<T




Future perpectives

Subjects in development

Simultaneous multispecie nutrient uptake contemplating effects of

interaction in the transport as well as in the absorption
(competence of ions for the transporter), problem already
suggested by some authors (Rengel, 1993).

Moving boundary models for water uptake at one and two phases,
of which some initial sketches have been presented through a
free boundary model at one phase for water uptake in loamy soils

Study of anaerobiosis of spherical aggregates of soil.



Water flux

The Darcy flux per root length unit is: VvV = —mtrk (\y)a_\P

Th ntinuit tion i zn@ __ov
e continuity equation is o ar
06 do 6‘1’ c(¥ )6(‘1’)
ot d¥ ot
-1/b
but Y-y o° 0= 1 (experimental)
0 \Po
-1/b —
then C(¥) = do _ d (V¥ _ i d(T 1Ib) _ ‘I’l’b -1/t
d¥ d¥\Y, ° d¥ b
_V_ 2n@ = 2nC(T)— —2n— Tb 0 v~ oF
or ot b ot
ﬂ . Tb "I"___1 oY
or b ot




Water flux
But deriving v with respect to r:

ov o ¥ b CEAY
N el k(P)LE +rk (Y k(¥)| 2=
or “[( ) or HR(F) G +rogk( )(ar)]

Experimentally, we known:

_ 0 —
k(iP)=k¥Y" == —k(¥)=-kn¥™"
(¥) =k, a‘P() .

Replacing in the previous equation

ov .| o¥ ¥ m(ow)
— =nk,¥ +r——— :
or or or- WY\ or
Now, our continuity equation results:
2n Fo i 0¥ _ [ ZarZyog(2y]
b ot

Finally

], with o="2

2h

o 114 | OF rn(a‘P)z PR
—=aP" - +r——;
or or or

That is a differential equation with fractional coefficients (n and b which are
obtained experimentally)



The moving boundary model for water uptake

In a similar way to nutrient uptake, we propose the following moving

boundary model for water uptake:

0¥ m(aw) ¥ ow . kb
o — +r— [=—, with o=_—"
or WY\ or or 2¥
s, <r<R(t), O0<t<T
¥(r,0) = o(r), s, <r<R,
_aRk (FR(t), ) TR _ g (a‘P(R(t)’t) - o), O<t<T
or or
k. (P(s,,t)) "
_ 0( ( 0 )) a"]:“(smt):G(\Ij(so,t)), O<t<T
I(t) or
R(t) =R, I°, 0<t<T
\ I(t)




A schematic diagram:

t
roc root
R0 o

Y(r,0) = o(r) r
RS
r=s r=R




Solution: Front fixing and Finite Differences

r-s,

y = R(t) _ SO ) = t! Q(yﬁ t) = T(r, t)'
) 0 _ o[ 1 R(E)yCI):’ oD |
ot 5(t) wd(t)2@>*" ) oy

A

@+ [— y8(i)~-|; So N (aq) )2 + y8(i)~-|; o 62?], O<y<1 0<t<T
5t @\ oy 8(t) or
i) @(y,0) = (y), 0<y<1
“DGQUJ)=O, O<y<1
v) —— 0001 = G((0,t)) 0<t<T
(t3(t)(@(0,1)
O<t<T

IO
\V) R(t) = R°\/E :




Water uptake. Predicted results for n = 2 (loamy soils)

Water potential profiles

10020 —=— (0 days —=— 30 days
~— 60 days —=— 90 days
= 120days —=— 150 days

10000 180 days

T
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Water potential at root surface
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Soil Aeration

The production of cultivations is affected by the insufficient
oxygenation and the generation of carbon dioxide of microbial activity
of the soils

Diverse authors have studied the mechanisms of the problems
of aeration by means of simulation models in which differential
equations are resolved on fixed dominions with varied initial
conditions and contour.

Keeping in mind the presence of aggregates of diverse forms
in the soils and their effect in the transference of oxygen a model of
radial diffusion-consumption in spherical aggregates physical and
biologically homogeneous is proposed.

The diffusion in spherical aggregates is described by means
of the Fick law with term of constant absorption and the anaerobiosis
of an isolated aggregate can be estimated on the basis of certain data

Following the physical process that originates a mathematical
model of free boundary for the diffusion and the consumption of
oxygen in a spherical media is detailed



Soil Aeration

First (diffusive stage) oxygen is diffused in such a way that part of it
is absorbed and eliminated from the diffusion process. The
concentration of oxygen in the fixed surface of the media is fixed.
The first phase continues until it reaches a stationary state in
which the oxygen doesn't penetrate any deeper in the media
(second phase: stationary stage).

The provision of oxygen is stopped and the media surface is isolated
so that no oxygen can enter or leave. The media continues
absorbing the inner available oxygen and therefore, the free
boundary that establishes a separation between the zone of
positive concentration and the zone of null concentration of
oxygen respectively (and that marks the width of maximum
penetration in the stationary case) begins to go back towards the
isolated boundary (third phase: consumption stage).

The problem consists in localizing the movement of the free boundary
and computes the distribution of oxygen in the spherical media.



Diffusive stage

Diffusive stage: Consist in to compute the transient concentration C =
C(r,t) and the boundary of separation s = s(t) that satisfies the
following problem of free parabolic boundary

+ M

_ o\
C(S(t),) = 0\

C.(S(t),t) = 0\

\
N
X
N
0 S(0) = b/ Fag F
C(r,0) = C,.
C(r,,,t)=C

<

eC, =D(

S(0)=b

C(r,0)=C
C(rag!t) =
C(S(t),t) = C,(S(t), ) = O,

C.+—-C,

ini?

C

ext’

2
r

)+M,

S(ty<r<r,,

t>0
S(0)<r=<r,
t>0
t>0




Stationary stage

Consist in deciding the stationary concentration C = C(r) and the free
boundary s = s(t) that satisfies the following problem of free elliptic
boundary

—D(C"+ZC')=M, Ss<r<r_;
r

A

C(rag) = Cext ’
C(s) = C'(s) = 0.




Consumption stage

Consist in to compute the transient concentration C =C(r,t) and the

boundary of separation s = s(t) that it satisfies the following
problem of free parabolic boundary

t>0;

ag’

eC, =D(CIrr +ECr)+M, s(t)<r<r
r

C(r,0)=C*(r), s <r<r,;

1C,(r:t)=0, t>0;
C(s(t),t) =C,(s(t),) =0, t>0;
s(0)=s"

Where:

C... >0 is the initial concentration of oxygen in the diffusive stage
C..: >0 is the external concentration of oxygen in the diffusive stage,
S = S(t) is the free boundary in the diffusive stage m,

s = s(t) is the free boundary in the stage of consumption m,

(C*,s*) is the solution of the stationary stage.



Consumption stage

s = s(t)
eC, =D (
C(s(t),t) = 0 |
C.(s(t)t) =0 j &
........................................ C, (rag’t) -0
/

< >

s(0) = s’ T Fag r

C(r,0) = C*(r)

C,,+2C
r

e m




Stationary stage solution

A numeric algorithm based on the discretization method of lines is
presented to approximate the solution of the diffusive stage. Carrying
out the change of variables

i Dt v — C
b> * T eb? 2C

y z(y)= % (donde b = S(0))

ext

The diffusive problem results:

2 .
V,=V,+ - Vv,-M

_ X -
A z=2(y) / Vy=Vxx+£Vx—M*, 2(y) S X <X, y>0;
X
| K/ V(X,0) = v, 1<X <X,
\\ 1 <v(xag,y)=%, y > 0;
_ 0¥ = ol [ v(zly),y) = v, (2(y),y) =0, y>0;
v(z(y),y) = 0\ o) — 1
v, (2(y),y) = 0\ z(0) = 1.

> ||l
0 z(0) = 1 T Xag X

v(x,0) = v, ;




Stationary stage solution

Where:

2
m =2

M)

- 2DC_,

X

ag

— 29

r _C.

ini

y 2C

ini

b

Carrying out a new change of variables:

u(p, 7) = v(x,y) = V(xag - ps7)

p=xag_x ’

T=Y

The diffusive problem results

X

S

2]

// u(s(t),t) =0

/ u,(s(t),7) =0

>

0

T s = p;,
u(p,0) = uy,

pag

p

ext

Where: S(t)=p,,—2(t) ¥y p,;=p,—1 con p, =x_

u =u - 2 u-M, 0<p<s(t),1>0;
Pag —P
u(p,0) =u,,, 0<p< p;g;
1
uo, =—, >0;
1u(0, 1) > T
u(s(t),t) =u,(s(z),7) =0, t>0;
S(O)=p;g*
Y Ui = Vi




Stationary stage solution
Fixing a step of constant time k, for each n = 0,1,2,... we define

(T, =nk
18, =s(t,)
U (P) =Uu, (P, Tn)

The time derivate is approximated backwards
un B un—1
Kk

u. =

and the differential equation
2

Pag —P

adopt the following discrete form by using the method of lines

u,—-u_, . 2
— un —_

: k Pag — P

Defining ¢ = E and g, the real function given by:

g (o) = —M° si n=1
P M +q’u_.(p) si n>1

u. =Upp—

up—M

u —M



Stationary stage solution

the diffusive problem is replaced by the following succession of
problems of free boundary

r

u,(p)+q’u,(p)=9,(p), 0<p<s,

—u, (p) +

pag
1U,(0) =%;

u(s,)=u(s,)=0. n=123,..

\




Algorithm for the diffusive stage
Initial data
k, step of the time
E, tolerance.
s, and s, , initials values of the free boundary.
First step
n=1
s=s,
Subroutine to solve the problem by means of fourth order Runge -Kutta
method (denoting the solution u = u(p)).

u,(p) = u(p)
If |u1(0) — 1/2| <E then it ends.
Beginning of the iteration
n=n+1
S=Ss,
Subroutine to solve the problem by means of fourth order Runge -Kutta
method (denoting the solution u = u(p)).

u,(p) = u(p)
f |u,(0)-1/2|<E then it ends

sn — sn—
o =0 = (O -112), o)
. n n-1

End of the iteration




