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Abstract 
 
Single nutrient uptake by a growing root system is often estimated by the Barber-

Cushman model. The model solves the coupled equations of transport in the soil and 
absorption of nutrient by roots in fixed domains. This study was conducted to determine 
whether a moving boundary model, accounting for increasing root competition, could 
improve predictions of nutrient uptake. Our model includes assumptions of the Barber-
Cushman model and the moving boundary approximation. The model predicts nutrient 
uptake by coupling nutrient flux to roots and nutrient absorption on a variable domain 
in time. The model output was compared with measured uptake of Mg, K, P and S by 
various crops and soils by using experimental data obtained from the literature.  
Predicted Mg, K and P uptake by pine seedlings were close to the observed for K and P 
but out of, Mg, yet the predicted uptake showed deviations similar to those of the 
Barber-Cushman model. Predicted S uptake by wheat in different soils was better at 
least in ten out of eighteen measured cases. The model prediction was also compared 
with measured K uptake by three maize hybrids grown on typic Hapludult of Río 
Cuarto, Argentina, in a growth chamber. The moving boundary model appears to 
provide a better description of coupling between transport, absorption of nutrient and 
root growth and improve the prediction for nutrient uptake in some tests. 



 

 

 
Nutrient uptake has been evaluated through diffusive and mass flow models which are 

based on numerical approximation in fixed domains of differential transport equations in soils 
coupled with absorption kinetics by roots (Cushman, 1979; Barber, 1995). These models 
estimate the nutrient concentration at the root-soil interface and the resulting nutrient uptake. 
Other models assume the root surface behaves like a zero-sink, therefore nutrient uptake is 
determined by the rate of nutrient supply to the root surface by mass flow and diffusion. In 
these models, the radius of finite cylindrical soil volume assigned to each root declines with 
increasing root density (Hoffland, 1990).  In other models, analytical solutions (Nye and 
Tinker, 1977) were used for calculating the volume of the soil allocated to each root and the 
concentration at root surface including a depletion zone that increased with time until it 
reached the non-transfer boundary (Smethurst, 1993). Recently, we have formulated free 
boundary models for root growth (Reginato et al., 1990, 1991, 1993a), i.e., analytical models 
through which it is possible to compute nutrient concentration at the root-soil interface and 
root growth rate (a priori an unknown function of time). This fact allows us to postulate a new 
model of nutrient uptake due to the transport and absorption of ions from a more dynamic 
point of view. This new model differs from our previous ones as the root growth rate is now 
plugged in as known function of time, the same as the Barber-Cushman model. Thus, the goal 
of the present work is to evaluate a moving boundary model for nutrient uptake which takes 
into account an increasing root competition for nutrient uptake from the soil by a growing root 
system combining ion transport, absorption kinetics and root growth simultaneously. 

A one-dimensional model is considered, i.e., a single cylindrical root in a soil where it is 
assumed that the conditions of moisture, light and temperature are controlled (like in a growth 
chamber). With these assumptions, the following one-dimensional nutrient uptake model 
through a moving boundary problem to one phase (the soil) (Crank, 1984, Tarzia, 1988) in 
cylindrical coordinates is proposed: 
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where r is the radial distance from the root axis [m], t is the time [s]; T is the maximum time 
for which the system has solution [s]; Cu is the concentration for which the net influx is null 
[mol m

-3
]; vo is the mean effective velocity of soil solution at root surface [m s-1]; b is the 

buffer power, D is the effective diffusion coefficient [m2 s-1], ka (= Jm / Km) is the absorption 
power of nutrient [m s-1]; Jm is the maximum influx at infinite concentrations [mol m-2 s-1]; Km 



 

 

is the concentration at which influx is Jm/2 [mol m-3];  R(t) is the variable half distance 
between root axes at time t [m], ϕ is the initial concentration defined in [so, R(t)] [mol m

-3
], Ro 

is the initial half distance between root axes [m], so is the root radius [m], l(t) is the root length 
as a function of time [m], and l0 is the initial root length [m]. The parameter εo is given by 

o o
o

v s
Db

ε = [dimensionless]. In our model, all coefficients are assumed to be constant. Equation 

(1-a) represents the ion transport equation in the soil. Condition (1-b) corresponds to the 
initial concentration and Condition (1-c) is the boundary condition representing null flux on 
the moving boundary R(t) that is a priori a known function of time. Condition (1-d) represents 
the mass balance at the root surface where the ions arriving are incorporated through 
absorption kinetics. Equation (1-e) gives us the moving R(t) as a function of the instantaneous 
root length l(t), which is known a priori.  Expression (1-e) is obtained assuming a fixed 
volume of soil and relating R(t) with the instantaneous root length (which is a special function 
according to method used to estimate longitudinal root growth, i.e., linear, exponential, 
sigmoid, etc.) (See Appendix A.). Equation [1-e] characterizes the moving boundary 
approximation and replaces a second equation in [1-d], which was postulated, in our previous 
free boundary models.   

The model is solved by applying the integral balance method (Goodman, 1958, Reginato 
et al., 1993b). So, the partial differential equation (1-a) is integrated in variable r on the 
domain (so, R(t)).  Moreover, by using an analogous methodology as used in phase-change 
processes, the following expression for C(r, t) is proposed: 
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where CR  is the initial ion concentration in soil solution at r = Ro [mol m-3]. Expression [2] 
for the concentration verifies the initial (1-b) by taking (0) 0β =  and boundary (1-c) 
conditions. So, after some elementary and long manipulations, and taking into account the 
particular case of an linear root growth, the following differential equation for β(t) was 
obtained (see Appendix B.): 
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The system [4] is solved through the Runge-Kutta method for ordinary differential 
equations, which was implemented in a FORTRAN program on a personal computer.  

Total nutrient uptake can be obtained from the following formula (See Reginato, Tarzia, 
2000), which is a modified version of the Cushman formula (Cushman, 1979; Claasen and 
Barber, 1976). 
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where Jc (t) is the influx, )(tl
•

 is the longitudinal root rate growth and U is computed from t = 
0 to t = tmax.  

MATERIALS AND METHODS 
 

Three maize hybrids (Dekalb 762, Capitán Ciba y Tilkara Funks) were grown in 
cylindrical pots with 1.6 kg. of typic Hapludult from Río IV, Córdoba, Argentina in a growth 
chamber at 26 o C. The whole pot experiment consisted of four replicates with 15 plants in 
each pot for the three hybrids. At emergence, 5 days after germination [DAG], plants were 
harvested to determine initial potassium and root length. The plants were harvested 11 DAG, 
dried at 70 °C, digested by wet-combustion and analyzed for potassium by flame photometry 
(Jackson, 1964). 

Determination of Model Parameters 
Soil and plant parameters for K uptake simulation were estimated as follows:  
Soil parameters: Values of CR (initial soil solution concentration of potassium) were 
obtained by analyzing aliquots of displaced solution from soil columns equilibrated at field 
capacity for 24 hr. (Adams, 1974).  Buffer power b and diffusion coefficient D were 
determined as described by Kovar and Barber (1990). Flux velocity vo  was determined by 
dividing the total water uptake of the plant in each pot within a given time, by the mean root 
surface area within the same given time: vo = W (ln S - ln So) / (t - to)(S – So). Total water 
uptake W was obtained by subtracting the water loss due to evaporation from the total water 
loss due to evapotranspiration 
Root parameters: The exponential root growth rate k was calculated from root length as a 
function of time by k = (ln l(t) - ln lo) / (t-to). The linear growth rate was calculated from the 
relation k = (l(t)-lo)  / (t-to). The mean root radius so was calculated from the root length and 
fresh weight by: so = [Weight Fresh / 1. Root length] 1/2  assuming a root tissue density of 1 g 
cm-3. Half distance between roots axes, Ro, was calculated by: Ro = [Soil Volume / 1. Root 
Length]½. Root length, l, was measured by the line-intersect method (Tennant, 1975).  
Kinetics Uptake parameters: Jm, Km, Cu and ka were determined by analysis of potassium 
depletion curves in a nutritive solution from which roots absorb nutrients (Claassen and 
Barber, 1974).  
Soil and plant parameters used in the moving boundary model are listed in Table 1. 

 
Table 1. Soil and plant parameters used in the moving boundary model 

Hybrid  
Parameter 

Capitán Ciba Dekalb 762 Tilkara Funks

Exponential root growth rate k, s-1 1.066 x 10-6 9.63 x 10-7 8.59 x 10-7 

Mean water influx rate at root surface vo , 
m s-1

  
1.26 x 10-8 2.24 x 10-8 1.15 x 10-8 

Mean root radius so, m 5 x 10-4 3.8 x 10-4 3.4 x 10-4 



 

 

Initial root length lo , m 1.8 2.41 2.05 

Initial half distance between roots axes Ro, 
m 

1.27 x 10-2 1.14 x 10-2 1.24 x 10-2 

Soil buffer power b, dimensionless 11.6 11.6 11.6 

Effective diffusion coefficient for the ion 
in soil D, m2 s-1 

6.827 x 10-12 6.827 x 10-12 6.827 x 10-12 

Maximum influx rate at high 
concentrations Jm , mol m-2 s-1 

1.316 x 10-6 6.752 x 10-6 4.744 x10-6 

Absorption power ka , m s-1 1 x 10-6 3.57 x 10-6 2.584 x 10-6 

Ion concentration in soil solution below 
which  influx ceases Cu , mol m-3 

 
2.183 x 10-2 

 
1.5 x 10-3 

 
9.9 x 10-4 

Initial concentration of ion in the soil 
solution CR , mol m-3 

 
8.4  

 
8.4  

 
8.4  

 
 

RESULTS AND DISCUSSION 
 

The results obtained for the potassium uptake of the three maize hybrids are presented in 
Table 2. The values obtained represent good results.  

 
Table 2. Potassium uptake by three maize hybrids: observed vs.  

predicted uptake by the moving boundary model. 
 K-uptake (mmol pot -1) 

 Hybrid Observed Predicted  
DEKALB 762 

TILKARA FUNKS 
CAPITAN CIBA 

0.1685 
0.293 
0.304 

 0.213 
 0.325 
 0.287 

 
For a more exhaustive analysis, the model was also tested with experimental data 

extracted from the literature. Thus, uptake of Mg, K and P for loblolly pine seedlings during 
180 days in a modified A horizon soil mesic Typic Hapludult (Kelly et al., 1992), was 
estimated. The comparison between the Barber-Cushman prediction using the NUTRIENT 
UPTAKE program (Oates and Barber, 1987) and the estimation of the present model, i.e., the 
moving boundary model, assuming a linear root growth with time is shown in Table 3.  

 
Table 3. Mg, K and P uptake by pine seedling: observed vs. predicted by Barber-Cushman and 

moving boundary models 
  Predicted uptake (mmol pot -1) 

Nutrient Observed uptake (mmol pot -1) Barber-Cushman  
Model (1) 

Moving Boundary  
Model (2) 

   
Mg 
K 
P 

 
1.617 
6.663 
1.332 

 
0.625 
6.285 
1.185 

Error (†) 
61.3 
5.6 
11 

 
0.680 (*) 
6.653 (*) 
1.302 (*) 

Error (†) 
57.1  
0.15 
2.25 

(1) Source: Kelly et al. 1992 



 

 

(2) Source: Present paper 
(†) Relative error = [(Observed uptake - predicted uptake)/Observed uptake] x 100. 
(*) The value obtained by the moving boundary model represents a better prediction 

 
Predicted uptakes improved in all cases, although for Mg uptake the same deviations 

showed by the Barber-Cushman model persisted, probably because high Jm values obtained 
from solution studies are responsible for underprediction of Mg uptake by crops (Rengel et al., 
1990). Thus, both models can be improved taking into account Jm values obtained from soil 
studies. The nutrient uptake predicted by our model can be improved in its theoretical aspects. 
In this respect, the limitation of these models is that both consider the absorption of only one 
nutrient explicitly without taking into account the simultaneous absorption of ions and the 
possible coupling with other ions in the absorption. This last fact suggests the need for a 
model that simultaneously takes into account the interactions among nutrients, as for example, 
by using competitive kinetic absorption.  

Moreover, the model is tested with data of S uptake by wheat grown on Norwood silt 
loam  (Typic Hapludalf) and Mhoon silty clay loam (Typic Fluvaquent) for a period of 24 and 
17 days, respectively, under glasshouse conditions (Delgado and Amacher, 1997). The 
NUTRIENT UPTAKE program (Oates and Barber, 1987) and the present model were used 
for the input data. The predicted uptakes using a linear root growth are shown in Table 4. 

 
Table 4. S uptake by wheat: observed vs. predicted by Barber-Cushman and moving boundary 

models 
Predicted uptake (mmol pot -1)  

Crop (Soil) 
Observed 
Uptake 

(mmol pot-1) 
Barber-Cushman Model  

(1) 
Moving Boundary Model 

(2) 
   

Wheat (Norwood +) 
 
 
 
 

Wheat (Norwood) 
 
 
 
 

Wheat (Mhoon +) 
 
 
 

Wheat (Mhoon) 
 

 
0.02557 
0.0287 
0.0452 
0.06923 
0.08358 
0.01091 
0.0234 
0.0452 
0.0561 
0.0977 
0.08576 
0.1356 
0.229 
0.2426 
0.0555 
0.08358 
0.0764 
0.08358 

 
0.004678 
0.02969 
0.05925 
0.09355 
0.1294 

0.004678 
0.03119 
0.0701 
0.106 
0.145 

0.09048 
0.2089 
0.3071 
0.4288 
0.02807 
0.05519 
0.08731 
0.1185 

Error (†) 
81.7 
3.4 
31 

35.1 
54.8 
57.1 
33.3 
55 

88.9 
48.4 
5.5 
54 
34 

76.7 
49.4 
33.9 
14.3 
41.8 

 
0.00749 (*) 

0.02684 
0.0532 (*) 
0.0746 (*) 
0.099 (*) 

0.00822 (*) 
0.02966 (*) 
0.06599 (*) 
0.08624 (*) 
0.1141 (*) 
0.01247 
0.01383 
0.01477 
0.01577 
0.01913 
0.03627 
0.05137 

0.06883 (*) 

Error (†) 
70.7  
6.5 
17.7 
7.75  
18.4  
24.6  
26.7 
46 

53.7  
16.8 
85.3 
89.8  
93.5 
93.5 
65.5  
56.6  
32.7 
17.6 

(1) Source: Delgado and Amacher, 1997 (We have extracted their predicted S uptake by using 
Jm obtained from soil studies) 

(2) Source: Present paper 
(†) Relative error = [(Observed uptake - predicted uptake)/Observed uptake] x 100. 



 

 

(*) The value obtained by the moving boundary model represents a better prediction 
 

 The moving boundary model provides a better prediction in ten cases for a total number 
of eighteen predictions. We remark that for Norwood soils the comparison between the 
predicted uptakes by the Barber-Cushman model and the predicted uptakes by our model 
shown that the present model overpredicts 1.27 times the observed uptakes while the Barber-
Cushman model overpredicted 1.72 times the observed values. This fact is shown in Figure 1. 
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Figure 1. Comparison between predicted and observed S uptakes by: A) Barber-Cushman 
model, B) moving boundary model 

 
 For the Mhoon soils, the predictions are poor. On the other hand, for long periods of time 

as accounting for K, P and Mg our model makes better predictions. We remark that the 
validity of the root competition assumption for the soils considered in the tests is justified 
because the depletion radius ( 2D or s Dt= +  following Baldwin and Nye (1974)) equals to 
the instantaneous half distance between root axes R(t) in few days (Aprox. three or four days 
for the soils considered). Thus, the moving boundary model could be a good alternative 
method for the prediction of nutrient uptake.  
 

Appendix A. 
 
The expression [1-e] is obtained assuming that the available soil volume at time t results from 
the difference between the available soil volume at initial time t = 0 and the grown root 
volume at time t, i.e., if Ro is the initial half distance between roots,  lo  is  the initial root 
length and l(t) is the root length at time t, then we have 
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Thus, after elementary manipulations the condition [1-e] is obtained. 
 

Appendix B 
 
Integral balance method (Reginato et al., 1993b). The functions F1 and F2 are given by:   
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The solution is found integrating the partial differential equation (1-a) in variable r over the 
domain (so, R(t)) with C(r, t) given by the expression [3]. Thus, for linear root growth rate, 

ktl)t(l o += , the problem [1] reduces to: 
 

o

o o o

R( t ) R( t ) R( t )
r

t rr os s s

o
o

o

C ( r,t )C ( r,t )dr D C ( r,t )dr D(1 ) dr
r

lR( t ) R , ( 0 ) 0
l kt

ε

β

= + +

= =
+

∫ ∫ ∫
  

          

Computing the following integrals, 
o

R( t )

ts
C ( r,t )dr∫ , 

o

R( t )

rrs
C ( r,t )dr∫  and 

o

R( t ) r
s
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r∫  and 

taking into account that the integral for eεr/r is approximate by a Taylor polynomial of nine’s 
order in variable r  (Abramowitz, 1972), after elementary manipulations, we obtain system 
[4]. 
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