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Root growth is studied, and a growth absor ption model for high concentrationsis
proposed, i.e., the free boundary MichaelissMenten model. Nutrient availability and
transport between the root surface and the rhizosphere are studied through the
Michaelis-M enten type absor ption for high concentrations. The resultant equations of
the present free boundary problem are used to compute the growth of root radius.
Graphics of interface concentrations vs. interface position and interface root-soil
position vs. time are shown as a function of parameters such as the flux velocity,
constant efflux , rhizosphere soil solution concentration, diffusion coefficient, and
buffer power.

In the literature there exists a great variety of methods for modelling the plant-root
system. One of these methods is the one that makes use of the theory of partial differential
equation for convective and diffusive flow to a root. In general, these models have not
computed root growth analytically (Claasen and Barber 1966, Nye and Marriot 1969, and
Cushman 1980, 1982), but we have considered the mathematical problem of free boundary
for root growth for low concentrations (Reginato, Tarzia and Cantero 1990) in a recent
paper, to which the present paper is a second part of the model for root growth for high
concentrations that we propose, i.e., we compute the root soil interface position and the
interface concentration through the quasi-stationary method (Lame and Clayperon 1831,
Stefan 1889, Cardlaw and Jaeger 1959, and Crank 1984).

ANALYSIS



In the present high concentrations (not saline conditions) model we make analogous

assumptions to the model for low concentrations (Reginato, Tarziaand Cantero 1990), i.e:

The porous medium is homogeneous and isotropic,

Moisture conditions are maintained at a steady state,

Nutrient uptake occurs at the root surface of the absorption zone,

The roots are smooth cylinders,

The rate of uptake can be described by a Michaelis-Menten type equation,

The nutrient transport occurs via convection and diffusion in the radia direction
only

(the latter takes place in soil solution phase only),

Therate of influx at infinite concentration (J,) and the Michaelis-Menten constant

(Km) are independent of the velolcity of soil water at the root

(Vo) and the diffusion coefficient (D) isindependent of the flux,

D and the buffer power b (b = 3—8 where C isthetotal diffusibleion and C; isthe

ion concentration in soil solution) are independent of concentration,
The root system parameters are not changed by root age (the absorption power k
= 2 = congtant),
The velocity of water is not affected by nutrient concentration,
Production or depletion of nutrient by microbial or other activity is considered null,
All parameters D,b,k are independent of temperature, in the temperature range
normally encountered in root growth,
The net uptake of nutrient is totally available for root growth, and
Root hairs do no affect the uptake nutrient.

With the above assumptions, the partial differential equation for mass and diffusive
transport of nutrient to the root (Cushman 1980, 1892) is given (in cylindrical coordinates)

by:
DC,+ [D + %B®] % = ¢ 2

where: C, istheion concentration in soil solution, C;, = %,Chr = %,Ch =
%, r isthe position coordinate, t thetime, and s, the initial radius.
Using an analogous method to that used for root growth for low concentrations
(Reginato, Tarzia and Cantero 1990), we propose the following free boundary problem for
root growth:

) DC, +Dac > =C , sH<r<RO<t<T,

i) G(r0) = &(r) . S<r<R,

i) C(Rt =Cy >0 ., 0<t<T, @)
iv) DbCGC(s(t)) + Vo Gi(s(t).t) = In — E = aGy(s(t).t) 5(t)

v) 90) = s , O0<s <R



where: 1) is the Cushman equation; ii) istheinitial concentration profile; iii) isthe
boundary condition on the rhizosphere radius R; iv) are the interface
conditions representing the mass nutrient balance with the assumption of

high
concentration for the uptake nutrient given by Michaelis-Menten expression
(3), %ﬁfj&?) ~ Jm, and, v) is the initial condition for the free boundary
s(t)

or root radius, ais a stoichiometric coefficient, E > 0isaconstant efflux,
anda, = 1 + €, withe = B2 > 0. &(r) istheinitial concentrationprofile
(given by the Eq. (14) below).

A method to solve (2) (that is, to compute C; = Ci(rt), C, = Ci(s(t),t), the free
boundary interfacer = g(t) a priori unknown, and the time T for which a solution exists,
i.e. the time for which the influx is null) is the quasi-stationary method (Lame and
Clayperon 1831, Stefan 1889, Carslaw and Jaeger 1959, and Crank 1984). This method
assumes that the soil solution concentration is that corresponding to the stationary case in
theinterval (s(t),R). We thus solve the equation:

C, + a2 =0 . S)<r<R 0<t<T, (4
with the conditions (2-ii,iii,iv,v), which are called the quasi stationary method for high
concentrations (QSMHC).

The two free boundary conditions (2-iv) can be written by:

G, (s(t),t) = 9(Ci(s(t).t) ,  0<t<T, (5)
s(t) = f(G(s(t).p) ,  0<t<T (6)

where functions g and f are given by:

g(C) = =E wG 7
f(C) = =gt ®

a

which satisfy the following properties:

gC) >0 & 0<C<C, =™m-EF (9)
f(C) > 0, VC > O. (10)

and v, satisfies the following inequality:

E

J, —
Vo < Voit = T

where vt represents the higher velocity below which we have a positive function g.



The solution of (QSMHC) problem is given by (see Appendix A.):

art) = B — ,  S<r<R 0<t<T (11)
where:

oft) = — [[(g(;f}],)} (12)

Bt) = C + N (13)

o) = Co + [BE - o] [1- (B)] (14)

and s(t) is the unique solution of the following Cauchy problem (see Appendix B.):

5(t) = F(s(t)) , 0<t<T (15)
S0) = % € (OR)
with:
R = [*75] o (10
where;

CI(S) = Cyx +

1[@;? H] (1 () ]o<t=T @

After some elementary manipulations, we obtain that the interface concentration is
given by the following expression:

v|®

Ci(s(t).) = Gi(s(t) (18)

that is, the interface concentration does not depend explicitly on variablet.
Moreover, it can be demonstrated that (See Appendix C.):

Case A: Withthehypothesis s, < ssand K, = —E — Cc > O

Vo

s) >0 < C(3 >0 Vs @CW—K26W>O
R € € — €
where:
_ R _ _R
* =g @+aF



Case B: With the hypothesis s, > s, andK, > O:
C( >0 VYse (suR) < Co — K [(g) . 1] > 0.

Case C: With the hypothesis K, < 0
C(s) > Cx > 0,Vs.

By anaogy, we arrive at similar propositions for low concentrations [5]. These are
given by (See Appendix D.):

L > 2R = st >0
The solution of Cauchy problem (Ince and Kreider 1956, Kuller and Ostberg 1968) is
computed numerically by the Runge-Kutta method for ordinary differential equations
(Conte and Boor 1972). Figures 1a, 1b., 1c., 1d., 1e, 1f., and 2a., 2b., 2c. represent the
theoretical results for the interface concentration Ci(s) vs. the root radius, s and the root
radius s(t) vs. the time t respectively. The values of parameters used are given for each.



F16. la. Interface concen-
tration C(s) versus the root
radius s as a function of flux
velocity v,.

F1G. 1b. Interface concen-
tration C(s) versus root radius
s as a function of the rhizo-
sphere solution concentration
C..

FiG. 1c. Interface concen-
tration C(s) versus root radius
s as a function of the efflux E.
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FiG. 2a. Root radius s(¢)
Nlrsus ¢ as a function of rhizo-
sphere soil solution concentra-
tion Co.

Fi1G. 2b. Root radius s(t)
versus ¢ as a function of efflux

E.

FiG. 2c. Root radius s(¢)
versus ¢ as a function of dif-
fusion coefficient D.
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From the results of figs. 1a.,1d.,1e. and 1f. we deduce that for all values of parameters
Vo, Jm, D and b, no counterdiffusion is produced in the interface root-soil in a wide range of
order of magnitude (1 to 10° for each). From fig. 1b. we deduce that the counterdiffusion is
meaningless as a function of the parameter C,,. On the other hand, from fig. 1c., for large
values of E there exists counterdiffusion and root growth islow.

From figs. 2a, 2b., and 2c., it follows that if the nutrient concentration C.,, the
diffusion coefficient D, or the constant efflux E increases then growth is lower, owing to
the fact that the effect of these parameters is to increase the soil solution concentration at
root-soil interface s(t) and, as the interface velocity §(t) is proportiona to @ growth

decreases. Root growth does not vary significantly as a function of the remaining
parameters.

From the comparison between the present model for root growth for high
concentrations and the corresponding model for low concentrations (Reginato, Tarzia and
Cantero 1990), we obtain that the absorption for low concentrations is more efficient than
the mechanism for high concentrations owing to the range of values for C(s) and s(t) for
each. This result is valid in the concentration range for the highly specific mechanisms |
(Epstein 1963, 1972), although total growth can be higher when both mechanisms | and 11
(not specific) operate in paralel (Welch and Epstein 1968, 1969).

CONCLUSIONS

In the present model no limit conditions for root growth in opposition to the case for
low concentrations exists (for low concentrations there exist a minimun concentration
above which the growth take place, i.e., the growth stop when Ci(s) = E ; instead, for
high concentrations the interface velocity §(t) is positive for al value of Ci(s).)

One important difference is that there exists counterdiffusion for E and C., for high
concentrations. Instead, for low concentrations counterdiffusion is possible for all
parameters.

We can remark that the model presented gives us a qualitative approach to root
growth under the action of a unique nutrient (This model isvalid for ions that are relatively
immobile, e.g., potassium, phosphorus).

Moreover, we assume that both mechanisms (low and high concentrations) could be
found in aradical system.

Finally, these conclusions can be perfectible taking into account the dependence of v,
with the nutrient concentration C,, and the water content 4. The same conclusions are
useful to outline and to understand qualitatively complex nutrient transport and growth
problems.

APPENDIX

Part A
The general solution of the second order ordinary differential equation (4) is given by:



G =06- ¢ (A1)

where o and 3 are arbitrary constants.

Because the partial differential equation (4) should be solved in the variable interval r €
(s(t),R), the coefficients o« and § must depend on the time t, that is, Egs. (12),(13). After
some elementary manipulations we deduce that o(t), 5(t) and s(t) are given by (12), (13),
and (15), respectively.

Part B
From Eq.(16) we obtain that (F/(s) = &):
with:
Fo = &4 Ky =%®-EFE >0
and:
Ky = &-F — C., Ks = R > 0,
wie) = §[1- %] >0 »<s<R
1_Ks
209 = T,y S <s<R
therefore, we obtain:
_ SUE) _ K1K, Z/(3)
Fi(s) = Ky [_ [C:(S)]?] - [le-kf(ZZ(s)}z (B1)
taking ¢ = &, weobtain:
_ _KiKeY/() R _ KiKz S &
Fi(s) = CotKoYOPF & ~ [CotKaYEP & [§E<1%E>1TT(§) (B2)
where Y (€) isgiven by:
_ 1-¢ R
Y(f)_l_§€<l_%5)| 1<§<% e >0

and verifies the following properties:

Y(1h = 0, Y(+0) = O



Function T(£) isgiven by:
TE) =& —1—¢
T(&) verifies the following properties:
T = — ¢ < 0,
T(+o0) = +00,
w6 = 1() - (8) -1
() = €&t >0
and the equivalence:
T =0 & E=1+e & £=@0+6 (=& = B)BY
therefore, F/(s) is abounded function.

Part C
CaseA: 5 < ssandKy > O:

Ci( = Co + K2Z(9 > Cy + Z(s) = Co — Kz L

T
%(1—5— €)Tve — ¢

(CY
CaseB: 5 > ssandKy > 0O:
9> 2 - 1 (8) = - [(8) - 4
then:
Ci(s) = Co +K2Z(8) > Co — Ky [(g) _ 1] . (C2)
Part D
Remembering that:
5(t) = X[1 — azH(@SW), G = %
where:
0 < a1 = —E— < ap = KXo
1 Vo So Coo 2 Vo So

a3 = _kCEZOC <1



HE = FE 6 =s|1-(3) |
Defining:

Hi(s) = 1 — az H(9) (D1)
The function H4(s) verifies the following properties:

1>H(0) =1-0a3>0
1>HR)=1—-—a3 >0

<0 <« 0 < s< Ry
Hi/(s) = — as H/(s){ =0 < S =Rg

>0 & Ry <s<R
and H(s) the equivaence:

H(i =0 & s=R, = ot < R
Finaly, 5(t) > 0if H(Ry) > O, thatis:
HiR) > 0 & L > H(Rp) = 17222, (D2)
where:
Gy = Re T
(14¢)3+
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NOMENCLATURE AND UNITS

r: Position (radius) coordinate [em]

t: Time [sec]

I Rate of influx at infinite concentration [ mol/sec.cm? |
Km  Michaelis Menten constant [mol/cm? ]

k: Absorption power of root [em/sec |

Vo! Velocity of flux solution at root surface [em/sec ]

D: Effective diffusion coefficient [ em?/sec ]

C: Total diffusable ion concentration [ mol/em? |

Ci:  Soil solution concentration [ mol/em? |
C(s(t),t):Soil solution concentration at root-soil interface [ mol/em? |
®(r): Initial concentration profile [ mol/cm? |
C.:  Constant rhizosphere soil solution concentration [ mol/cm? |

So: Initial radius [em]

E: Constant efflux [ mol/sec.cm? ]
s(t):  Instantaneous root radius [ em]

§(t):  Instantaneous velosity of root-soil interface [em/sec ]

R: Rhizosphere radius [ em]

b: Bufffer power Dimensionless
a Stoichiometric coefficient Dimensionless
a1, a2 [1/em ]

O, €, (3,7 Dimensionless



