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ABSTRACT

‘An earlier article briefly reviewed the possible effects of the rhizosphere on nutrient
transport to a roct. In that article, transport in the rhizosphere was considered
separately from bulk transport with coupling arising from the rhizosphere bulk-soil
" boundary conditions. Four linear nutrient transport problems were considered and
-solved analytically.

" In this article we have extended the results of the earlier article to account for
nonlinear root boundary conditions; arbitrary spatial and temporal changes in the
buffer power and diffusion coefficients; nonlinear sources and sinks of nutrient in both
the rhizosphere and bulk soil; and arbitrary, nonlinear, initial conditions.

The computer results indicate that if the buffer power, effective diffusion coefficients,
and sources or sinks differ between the rhizosphere and bulk soil, an alteration of the
concentration profile and total nutrient uptake may take place. Certainly, this effect
can play a role in plant shoot development, as such development is dlrectly affected by
nutrient uptake.

The numerical model was calibrated with the analytical solutions to the linear
problems presented in Cushman (1982). Although the analytical solutions agree with
the numerical solutions, it is much less time consuming and expensive to use the
numerical sithulation. Moreover, the numerical solution ig much more general than the
analytical solution. If one determines the diffusion coefficient, buffer power, and source
or sink as a function of moisture content, the numerical model can handle transient-
state moisture conditions provided the moisture content does not change too rapldly

Such-data at this point, however, are not available.

INTRODUCTION

In the first part of this sequence of articles
(Cushman 1982), we presented a brief review of
properties of the root rhizosphere and showed
how these properties may affect the transport
equations that describe movement of nutrient
to a single root. The analysis of the transport
process was characterized by the subdivision of
the root-soil environment into three concentric
regions (1) the root, (2) a cylindrical rhizo-
sphere, and (3) the bulk-soil matrix exterior to
the rhizosphere. Transport in the rhizosphere
and the exterior bulk-soil was represented by
two linear nondimensional problems, each of
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which was solved analytically. The solutions
were composed of infinite series of negative frac-
tional order Bessel functions of the first and
second kind in space and exponential functions
in time. No graphical results were presented to
illustrate the mathematical results.

As is well known (see Hodges 1974 or Barber
and Silverbush 1983), except for low nutrient
{or very high nutrient) concentration, root ab-
sorption of nutrient is nonlinear. Generally, it
is assumed to. follow a Michaelis-Menton type
of relationship. Because of this nonlinear rela-
tionship, the analytical solutions of Cushman
(1982) are limited to the regions mentioned. To
account for the intermediate range of concentra-
tions, we will include the general Michaelis-
Menton root surface condition in this article.

As mentioned, in the Cushman (1982) article,
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the flow domain was subdivided into three re-
gions. This subdivision may be a reasonable
approximation in some cases, but the obvious
generalization, to account for many more flow
situations, would be to allow for arbitrarily vary-
ing (with space and time) buffer power and
diffusion coefficients. The main reason for al-
lowing variations in buffer power in the vicinity
of the root is the ability of the root to alter pH
in its immediate environment. There are several
possible definitions for the buffer power; we
suggest the reader consult the appendix for a
discussion. Because the root gives off mucigels
and because the root alters the soil bulk density
in its vicinity, the diffusion coefficient will vary
with radial distance from the root as well. This
variation of the diffusion coefficient can be
modeled as a discontinuous or continuous phe-
nomenocn. In this article we allow for a general
variation in the buffer power and diffusion coef-
ficient.

Another limitation of the Cushman (1982)
article, as well as earlier articles, is the reliance
on exponential root growth. As is generally
known, the assumption of exponentlal growth is
valid only for relatively young roots. In this
article we allow for polynomial, as well as ex-
ponential, root growth rates.

The general transport problem may contain
nonlinear sources or sinks of nutrient (e.g., due
to microbial activity). To account for these non-
linear sources or sinks, we introduce (purely as
an example) polynomial sources and sinks. In
the model we will develop, however, any nonlin-
ear source or sink will work.

Finally, in this article we present a numerical
algorithm to solve the fully nonlinear problem
that is second order in space-time, uncondition-
ally stable, and quadratically convergent.
Though the algorithm, including Newton’s
methods, presented is similar to those used in
the fluids literature, it does not appear in the
soils literature. The scheme can be rigorously
shown to converge to the true solution of the
partial differential equation (PDE) in the second
order.

In this article we present only numerical re-
sults. Experimental results that include the rhi-
zosphere are not available, due to the difficulty
in constructing accurate experimental tech-
niques, to study the rhizosphere and its effect
on the effective diffusion coefficient and buffer
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power. The graphical results and programs
should, however, be of value in interpreting and
predicting the effects the root rhizosphere has
on nutrient uptake.

GENERALIZED MODEL

Although the transport equations of Cushman
(1982) would probably model the rhizosphere
bulk-soil system reasonably well, a more accu-
rate model would allow for a rhizosphere that
gradually changes into bulk soil with distance
from the root, i.e., there would not be a double
ring model, but rather a model with smoothly
varying radial functions. Moreover, both the
buffer power and effective diffusion coefficients
may vary with time in the rhizosphere {e.g., due
to variations in moisture content). Throughout
this article we let ro be the root radius, C, the
concentration in solution, b, the buffer power,
D the effective diffusion coefficient, v, the pore
water velocity at the root, a the source or sink,
k the root absorption power, J ., the maximum
influx, E the efflux, and r, the outer radius of
influence of the root. To include these general-
izations in our model, we examine the distribu-
tional equation
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where Eq. (2) will be recognized as the Michae
lis-Menton condition.



If we introduce the nondimensional variables
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For simplicity we will consider only the interroot
_competition problem (Eq. (7)).

To verify that Egs. (5) through (8) reduce to
the equations of Cushman (1982) (under the
assumptions and notation of that article), we
consider Eq. (5) in the sense of distributions
(Donoghue 1969). Setting

D = D(I)X(l,am) + D(z)X(am,u(’))
b = bWx e + bPx 0.
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we find that both Egs. (14) and (19) of Cushmanr.
(1982) result. Moreover, noting that the distri-
butional derivative of a characteristic function
{x.) of a set A may be written as a sum of Dirac
delta functions, we also get Eq. (17) {Cushman
1982). The other boundary and initial conditions
are obvious, e.g., setting p’ = 0 in Eq. (6) pro-
duces Eq. (15) of Cushman (1982) for linear
uptake. Henceforth, for our model problem of
nutrient transport, we will use Eqgs. (5) through
(8) with b and D’ arbitrary functions of u and
7; also we may take @' nonlinear in 8 as well as
an explicit function of u and 7. '

Using Eq. (6) for our root boundary condition,
we rewrite Eq. (29) of Cushman (1982) as
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Here it should be noted that dg/dy has units of
length. If g is represented by an exponential

- g(t) = Ly exp(yt) - (11)

and the initial concentration is low (p = 0), then
Eq. (10) reduces to Eq. (31) of Cushman (1982).
Ifgis exponentlal and C; is arbitrary, then Eq.
(10) becomes

J

21rr03kC .'Lo
D Q)

Tmax 1-9
S o T
R & [1+p(1—0)

"max @ Tmax” "
+ 'l/(l) e\& n
0 0

[ (L-6)
1+ p(1—0)

T= Tn (12)

d] ds
(13)

- d] ds dn

where
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Another interesting case arises if the root has
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polynomial growth rate. In this case we set

N
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Using Eq. (16) in Eq. (10), we get
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where T is given by Eq. (12). We will use either

Eq. (13) or (17) for the nondimensional total
uptake equations.

—d]dsd'n

DIFFERENCE EQUATIONS

There are numerous ways to difference Eq.
(5); we use 0(Au®) spatial derivatives; a forward-
in-time temporal derivative; and time average of
6;. The resulting difference equation represent-
ing Eq. (5) is second order in space and time,
unconditionally stable, and given by
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where
a, =L =2 gy (BD)
/ 4#1A# J 2bjn+l/2A}L2’
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By addition of a node internal to the root we
may derive second-order centered differences for
the root boundary condition. The resulting dif-
ference scheme is

00n+1 - Gn+l/2(1 — gln+1)

. T -1
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The outer boundary condition is obtained in a
fashion identical to Eq. (19) as

0n+1 - 02:-11 + Pn+1/2(8hn+l - 1)

k+1
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where

n+
prova = vau |7
D ’ a(2) X 4
The reader should at this point note that Eq.
(18) is nonlinear. We thus must use an iterative
method to solve this system. The most straight-
forward method with quadratic convergence is
Newton’s method. The details of the implemen-
tation of Newton’s method to our scheme are
available from the author.

p=a

EXAMPLES AND COMPARISONS

To help in interpreting the data, we present
all results in dimensional form. However, the
reader should note that any other combination
of dimensional variables that produce the equiv-
alent nondimensional variables, will give the
same results.

Throughout this article we will use soil param-
eters consistent with potassium in a silt loam.
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We use plant parameters similar to those of corn
(Zea mays L.): ro = .015 cm, v = 107" cm/s, r,
= .25 cm, Jmex = 7.05-107° umoles/cm® s, k =
1.28.10* s, and E = 2.47-107® pmoles/cm® s.
We set C; = .01 umoles unless otherwise noted,
and total uptakes are given at 10 d.

We first examine the relationship between the
linear-analytical solution of Cushman (1982)
and the nonlinear-numerical solution. For this
case only, we set E = 0; for all other graphs £ is
as defined above. The buffer power b is given by
b=12 for r < .03 cm and b = 24 for r = .03 cm.
Here .03 cm is the radius of the rhizosphere (r’).
We set D = 3.47-107® cm?/s and C; = .1, .01,
.001, and .0001 pmoles, respectively. Only the
concentration profiles for C; = .1, .01, and .001
are plotted in Fig. 1. The concentration profile
for C; = .001 of the numerical solution is iden-
tical to the analytical solution. It should be
‘noted that at .74 d the concentration profiles
are very similar for C; = .1, .01, and .001 gmoles.
An interesting comparison is that of total up-
take. If we assume that the root is growing
exponentially with [ = .0000016 s7’, the total
uptake divided by C;L, is 149.9, 155.7, 156.2,
and 156.2 for C; = .1, .01, .001, and .0001 gmoles,
respectively. Thus when C; < .01, there is very
little difference in the nonlinear solution for
total uptake and the linear solution. If we had
assumed the roots were growing linearly at a
rate L, (1. +0.03 t), then the total uptake divided
by LoC;: would be 16.8.10° 17.4.10% 17.5-10%
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F1G. 1. A comparison of the analytical solution of
Cushman (1982) to the numerical solution. The curve
for C; = .001 is identical to the linear solution.
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and 17.5-10%, respectively. Again it is seen that
if C; < .01 umoles, the linear solution of Cush-
man (1982) is a good representation of the con-
centration profile and uptake.

We next examine variations in the radius (r’)
of a well-defined rhizosphere. We maintain b as
above, but set the rhizosphere radius r’ to .02,
.03, and .045 e¢m, respectively. Graphical results
of the concentration profile are presented in Fig.
2 at 0.74 and 10.0 days. As can be seen, the
larger r’ is, the larger the depletion of nutrient
near the root is, but the smaller the depletion is
outside the rhizosphere. If we had b greater in
the rhizosphere than outside, just the opposite
would have occurred. Suppose now that we let b
= 24, be constant throughout the soil profile,
but let D = 6.94.108 cm?/s for r < r’ and D =
3.47-107% cm?/s for r = r’ where r’ is .02, .03,
and .045, respectively. Results for this case are
presented in Fig. 3. Now we see that as r’
increases, the depletion in the rhizosphere is
less, and the depletion of nutrient is greater
outside the rhizosphere. Again, the opposite
would hold if D were smaller in the rhizosphere
than outside.

Suppose now that the rhizosphere is not well-
defined, i.e., properties vary smoothly in the soil
profile. As an elementary example, we will as-
sume that D = 3.47-107% cm?/s and that b = by(r
—r")/2(r" — ro) + bo for r < r’ and that b = b
for r = r’ where b, = 24, and r’ = .02, .03, and
.045 cm, respectively. Figure 4 presents graphi-
cal results for this case. Note that because the
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Fi6. 2. A comparison of the effect of rhizosphere
radius changes in a well-defined rhizosphere; b = 12
in the rhizosphere, and b = 24 outside the rhizosphere.
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F1G. 3. A comparison of the effect of rhizosphere
radius changes in a well-defined rhizosphere; D =
6.94-10°® ¢cm?/s in the rhizosphere and D = 3 47.1078
cm?/s outside the rhizosphere.
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F1G. 4. A comparison of the effect of rhizosphere
radius changes in a non-well-defined rhizosphere; b =
bo(r—r")/2(r' —rg) + boforr<r',and b=bgforr =
r’ where b = 24.

buffer power varies smoothly, there is no sharp
break in the slope of the concentration profile.
However, a comparison of Fig. 4 with Fig. 2
shows only a small difference between the two.
Figure 5 is similar to Fig. 4, but now b = 24
throughout the profile, while D = Do(r — r’) /(1o
—r')Y+Doforr<r’,and D=D,forrz=r’
where D, = 3.47-107® cm?/s. The characteristics
of the concentration profile in Fig. 5 are similar
to Fig. 3, but they are less dramatic in Fig. 5.

169

Let us now look at the effect a source or sink
of nutrient has on nutrient transport in the soil
system. We will confine our attention, for the
sake of brevity, to a source term in the rhizo-
sphere. For simplicity, we will assume the source
term is a polynomial

N
a=Y a

i=1

{C?

or

—ar, 02

" =Copy

N .
_"21 &(1 - 6y

It

where

—ro2a, (C)2

T

are the nondimensional polynomial source coef-
ficients. Again, for ease in interpreting the re-
sults, we use dimensional variables for the fig-
ures; however, other dimensional variables will
produce the same results if the associated non-
dimensional variables are equal. In Fig. 6, b =
24, and D = 3.47-107® em?/s throughout the soil
profile. The figure compares the profiles for the
case of no source to the case where o, = 1075, a,
=3.6-107% a3 = 1.27-10™%, and o, = 4.55-10™*

with r’ = .03 cm. It is interesting in this case to
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Fic. 5. A comparison of the effect of a variable
rhizosphere radius in a non-well-defined rhizosphere;
D=Dy(r=r'}/Go~r")+ Dyifr<r’,and D = D, if
r = r’ where Do = 3.47-1072 cm?/s.
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Fic. 6. The effect of a source in the rhizosphere on
nutrient transport.

note that although there is a distinct rhizo-
sphere, there is no break in the slope of the
concentration profile as in previous figures.

SUMMARY

In this article we have extended the results of
Cushman (1982) to account for nonlinear root
boundary conditions, arbitrary spatial and tem-
poral changes in the buffer power and diffusion
coefficients, nonlinear sources and sinks of nu-
trient in both the rhizosphere and bulk soil, and
arbitrary, nonlinear, initial conditions.

The graphical results in this article were the
outcomes of five computer programs; RHIZ01,
UPTAKEL1, UPTAKE2, PLOT1, and PLOT2.
RHIZ01 solves the general nonlinear transport
problem for the concentration profile as a func-
tion of time and space. The program was written
to handle data more general than the data used
for the graphical results presented. UPTAKEL1
and UPTAKE2 were written to compute total
uptake for exponential and polynomial growth
at specific times and as a function of time,
respectively. PLOT1 and PLOT?2 plot {to CRTs
and hard copy) concentration versus distance at
various times and total uptake versus time, re-

spectively. All computer programs are available'

for distribution.

The computer results indicate that if the
buffer power, effective diffusion coefficients,
and sources or sinks differ between the rhizo-
sphere and bulk soil, a profound alteration of
the concentration profile and total nutrient up-
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take may take place. Certainly, this effect can
play a role in plant shoot development, as such
development is directly affected by nutrient up-
take. .

The numerical model was calibrated with the
analytical solutions to the linear problems pre-
sented in Cushman (1982). Although the analyt-
ical solutions agree with the numerical solutions,
it is much less time consuming and expensive to
use the numerical simulation. Moreover, the
numerical solution is more general than the
analytical solution. If one determines D, b, and
@’ as a function of moisture content, the nu-
merical model can handle transient-state mois-
ture conditions provided the moisture content
does not change too rapidly. Such data at this
point, however, are not available.

The major need at present for determining
the effects of the rhizosphere on nutrient uptake
for specific plants is an accurate knowledge of -
the rhizosphere transport properties. Given ac-
curate knowledge of these properties as a func-
tion of time, space, and concentration, the nu-
merical model should be useful in simulating
nutrient depletion in the soil system. This in-
formation may in turn lead to more efficient
fertilization practices and the breeding of plants
with better nutrient uptake characteristics.

The model can be used to estimate the re-
quired accuracy of input data to show effects on
nutrient depletion.

APPENDIX

It was brought to the author’s attention by a
reviewer that there can be several definitions for
a buffer power. I will discuss the relationship
between two of these definitions. For steady-
state (or nearly steady-state) moisture condi-
tions in a nondeforming medium, we may as-
sume

Cr=f(C) (A1)

where Cr is the total concentration and C, is the
liquid phase concentratin. In this case we may

define a buffer power by
_9Cr
b(r, t) = aC, (A2)
This gives rise to
9Cr _9CrdCi_, , 9C
at ~ac, at o D% (A3
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In this manuscript, b is used in the above sense.  which gives
We can also define a buffer power, b’, by

b=3'(’J Co+ b’ (A7)
C [”S(C’) + o] Ci=b'C,  (A4) l '
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