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       The root surface as an absorption mechanism and its growth is studied, and a
growth absorption model is proposed, i.e., the free boundary Michaelis-Menten
model. Differences in nutrient availability and transport between the root surface and
the rhizosphere are studied through the mechanism of absorption which manifests
itself in the limit expression of Michaelis-Menten kinetics for low concentrations. The
resultant equations are analytically solved by the quasi-stationary method with two
interface boundary conditions and boundary and initial conditions. The solution is
used to compute growth of root radius. Several examples of concentration
distribution curves in soil and interface root-soil as a function of root radius are
plotted. The parameters which are varied are the root absorption power, flux
velocity, transpiration rate, rhizosphere soil solution concentration, diffusion
coefficient, and buffer power.

          any methods exist for studying the mechanism involved in nutrient uptake. One ofM
the most promising methods is the mathematical model, which can be a satisfactory
method of modelling the plant-root system by use of the partial differential equation for
convective and diffusive flow to a root (Claassen and Barber, 1966; Nye and Marriot,
1969; Cushmann, 1979, 1980, 1982). In general,  these models have not considered
computing root growth, but rather they have assumed young roots to be growing at
exponential rates (Claassen and Barber, 1966; Cushmann, 1980, 1982). In the past, various
devices and models have been proposed and analyzed with the purpose of interpreting
growing process as a free boundary problem for the heat-diffusion equation [Lame and
Clayperon, 1831; Stefan, 1889; Carslaw and Jaeger, 1959; Crank, 1975; Tarzia, 1988). In
this article we compute the free boundary (the root-soil interface)  a priori unknown
through the quasi-stationary method (Stefan 1889; Carslaw and Jaeger, 1959). We obtain
an analytical solution for the nutrient interface concentration and the interface position (the
free boundary).

ANALYSIS  THE FREE BOUNDARY MODEL) (

            fore developing the present model for the nutrient flow to a root, we make severalBe
assumptions, which are the following:



  The porous medium is homogeneous and isotropic,
  Moisture conditions are maintained at a steady state,
  Nutrient uptake occurs at the  root surface of the absorption zone,
 The roots are smooth cylinders,
  The rate of uptake can be described by a Michaelis-Menten type equation,
  The nutrient transport occurs via convection and  diffusion in the radial
 direction only (the latter takes place in soil solution phase only),
  The rate of influx at infinite concentration (J ) and the Michaelis Mentenm
 constant (K ) are independent of the velocity of soil water at the root (v ),m o
 and the diffusion coefficient (D) is independent of the flux,
  D and the buffer power b  b   where C is the total diffusable ion and CŠ œ dC

dC ll

 is the ion concentration in soil solution  are independent of concentration,‹
   The root system parameters are not changed by root age k     constant ,Š ‹œ œJ

K
m
m

  The velocity of water is not affected by nutrient concentration,
  Production or depletion of nutrient by microbial or other activity is null,
  All parameters D,b,k are independent of temperature, in the temperature range
 normally encountered in root growth,
  The net uptake of nutrient is totally available for growth,
 Root hairs do not affect nutrient uptake.
         With the above assumptions, the partial differential equation for mass and diffusive     
       transport of nutrient to the root (Cushmann, 1979, 1980) is given (in cylindrical
coordinates) by:
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   C   ,  r the position coordinate, t the time, D is the effectivet
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   diffusion coefficient; v  the velocity of flux solution at the root!

  surface; b the buffer power, and s  the initial radius.               !

 
 Taking into account the idea of the model used for the shrinking core problem for
noncatalytic gas-solid reactions (Wen, 1968; Tarzia and Villa, 1990), we propose the
following free boundary problem for root growth (An extensive bibliography for moving
and free boundary problems for the heat-diffusion equation is given in Tarzia, 1988:
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where: i) is the Cushman equation [4,5], ii) and iii) are the initial and boundary 
  conditions respectively, iv) are the interface conditions representing
  the mass nutrient balance, and v) is the initial radius.



  Function s(t) is the interface position (root radius), s (t)   the† œ ds(t)
dt

  interfase velocity, a is a stoichiometric coefficient, E is a constant
  eflux, k is the absorption power of root, R is the rhizosphere radius, and
  = 1  ,   =   0. (r) is the initial concentration profile ( given! % % F! 
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  by the  equation  (14) below).

       A schematic diagram of free boundary problem is given in Figure 1.

      Figure  1
    
We notice that conditions  (2-iv) transform the initial problem of solving the linear
Cushman equation into a problem which is non linear.
 Assuming low concentrations, the uptake nutrient given by Michaelis-Menten
expression reduces to:

         k C(s(t),t)       (3)k C(s(t),t)
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 Thus, (2) reduces to the following free boundary problem:
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 A method to solve (2-LC) (that is, compute C=C(r,t), C=C(s(t),t), the free boundary
interface r  s(t) a priori unknown) is the quasi-stationary method (Stefan, 1889; Carslawœ
and Jaeger, 1959; Tarzia, 1984). This method assumes that the soil solution concentration
is that corresponding to the stationary case in the interval (s(t),R). We thus solve the
equation:

          C     = 0                    , s(t) r R,   t  0 (4)    rr
C
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with the conditions (2-LC:ii,iii,iv,v) which are called the quasi-stationary method for low
concentrations (QSMLC).



 The two free boundary conditions (2-LC:iv) can be written by:

    C (s(t),t)  g(C(s(t),t))        ,        t  0   (5)    r œ *
      s (t)  f(C(s(t),t))            ,             0   (6)    t † œ *

where functions g and f are given by:
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which satisfy the following properties:
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 The solution of (QSMLC) problem is given by (see appendix A.):
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and s(t) is the unique solution of the following Cauchy problem (see Appendix B.):
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 Therefore, we obtain, after some elementary manipulations, that the interface
concentration is given by the following expression:

          C(s(t),t)    ( C(s(t))     ,     t  0   (19)      œ œ *C
H(s(t))

_



that is, the interface concentration does not depend explicitely on variable t.
 The solution of Cauchy problem is computed numerically by the Runge-Kutta method
for ordinary differential equations. Figures 2a, 2b, 2c, 2d, 2e, 2f and 3a, 3b, 3c, 3d
represent results for the interface concentration C(s(t),t) vs. s and the interface position s(t)
vs. t respectively as a function of the dimensionless parameter k/v .!



 From the results of figs 2a.,2b.,2c. and 2d. we deduce that if the parameter k/v  is!

small (e.g.: 1.5,2) accumulation of nutrient is produced in the interface root-soil, then there
is counterdiffusion and the root growth is low. On the other hand, for large values of k/v!

(e.g.: 10) the  root growth is fast and the counterdiffusion is null. The limit value of  k/vo
which produces the counterdiffusion effect depends on the remaining parameters.

 From the results of Fig.2e., it follows that if the nutrient concentration C  increases_

or  k/v   is large then the counterdiffusion is null and the growth is faster. On the other!

hand, as shown in the fig.2f. if E decreases or k/v  is large, then the counterdiffusion is nullo
and the root growth is faster.
 Some of the above theoretical results have been observed from an experimental point
of view (Barley, 1970; Nye and Tinker, 1977).
Let  be the parameter defined by:#
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We can prove that (see Appendix C):

                  1 implies that C(s(t),t) has a minimun value  i) # œ )E
(k  v ) C- o _

      because the absorption power k is large with  



      respect to v   and there is no counterdiffusion.o
 

 ii)        1 implies that C(s(t),t) is constant. (20)# œ œE
(k  v ) C- o _

 iii)             > 1 implies that C(s(t),t) has a maximun         # œ E
(k  v ) C- o _

       value because k is small and the root can not   
      absorb all the arriving nutrient and there is a  
      counterdiffusion effect.
 
These results agree with Cushmann' conclusions (Cushmann, 1979).

CONCLUSIONS

                conclude from the model presented above that: We 
  s   s(t)  increases when parameter k or C   increases (Figures 3a, 3b).œ _

  s  s(t)  decreases when parameter E  increases (Figure 3c).œ
  s  s(t)  increases when parameter (k/v )  increases and, k and v areœ o o 
large (Figure 3d).
   s  s(t) does not vary in function of the parameters v b and D because we did notœ o, 
have variations in the corresponding diagrams in a wide range of order of magnitude (1 to
10 for each).5 

   s   s (t) decreases when parameter  increases, because from (15)-(18) we have for† †œ #
s(t) the following representation in function of the parameter :.
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This conclusion agrees with the first three  conclusions.
     Finally, we can remark that the model presented in this paper gives us a qualitative
approach (through a mathematical model) to root growth under the action of only one
nutrient, with  natural limitations in the real situation.
 Moreover, these conclusions are useful for calibrating numerical models of the more
complex nutrient transport and growth problems or they may be used to isolate the effects
of the various parameters in the present model.

APPENDIX

Part A
The general solution of the second order ordinary differential equation (4) is given by:

                C(r) =        (A1)" - !
r%

where  and  are arbitrary constants.! "
Because the partial differential equation (4) should be solved in the variable interval r −
(s(t),R), the coefficients  and  must depend on the time t, that is, (12) and (13). After! "
some elementary manipulations we deduce that (t), (t) and s(t) are given by (12), (13)! "
and (15) respectively.



Part B
From (16) we obtain that F'(s) = :# ‘dF

ds
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that is:
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because:
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From (B2), F' is a bounded function and therefore, the Cauchy problem (15) has a unique
solution.

Part C
From (17) and (19)  C(s)    we obtain that (Case   ):’ “œ ÁC
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and:
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From (C2) we can remark that the interface concentration has an extreme value at s  R .œ o
After some elementary manipulations we obtain:
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and then we conclude (20).

NOMENCLATURE AND UNITS

 r: Position (radius) coordinate     [ CM ]

 t: Time         [SEC ]



 J : Rate of influx at infinite concentration       m
MOL

SEC-CM
# ‘2

 K  Michaelis Menten constant       m:
MOL
CM

# ‘3

 k: Absorption power of root       # ‘CM
SEC

 v : Velocity of flux solution at root surface      o
CM
SEC

# ‘
 D: Effective diffusion coefficient       ’ “CM

SEC
2

 C: Total diffusable ion concentration      # ‘MOL
CM3

 C : Soil solution concentration         l
MOL
CM

# ‘3

 C(s(t),t):Soil solution concentration at root-soil interface       # ‘MOL
CM3

 (r): Initial concentration profile       F # ‘MOL
CM3

 C : Constant rhizosphere soil solution concentration     _ # ‘MOL
CM3

 s : Initial radius       [ CM ]o

 E: Constant efflux         # ‘MOL
SEC-CM2

 s(t): Instantaneous root radius     [ CM ]

 s (t): Instantaneous velosity of root-soil interface     † # ‘CM
SEC

 R: Rhizosphere radius      [ CM ]  

 b: Bufffer power      DIMENSIONLESS

 a: Stoichiometric coefficient    DIMENSIONLESS

 ,               ! !1 2
1

CM
# ‘

 , , ,        DIMENSIONLESS! % ! #o 3

REFERENCES

Barley, K.P. 1970. The configurations of the root system in relation to nutrient uptake,
Adv.Agron,22, 159-201
Claassen N. and S.A.Barber. 1966. Simulation model for nutrient uptake from soil by a
growing plant root system, Agron.J. 68, 961-964
Carslaw H.S. and J.C. Jaeger. 1959. Conduction of heat in solids, Clarendon Press, Oxford
Crank, J. 1975. The mathematics of difussion, Clarendon Presss, Oxford
Cushmann, J.H. 1979. The effect of a constant efflux on solute movement to a root, Plant
and Soil, 53, 303-317



Cushmann, J.H. 1980. Analytical study of the effect of ion depletion (replenishment)
caused by microbial activity near a root, Soil Science, 129,2, 69-87
Cushmann, J.H. 1982. Nutrient transport inside and outside the root rhizosphere theory,
Soil Science Society of America J., 46,4(, 704-709
Lame, G. and B.P. Clayperon. 1831. Memoire sur la solidification par refroidissement d' un
globe liquide, Annales Chimie Physique, 47, 250-256
Nye, P.A. and F.C.Marriot. 1969. Theoretical study of the distribution of substances around
roots resulting from simultaneous diffusion and mass flow, Plant Soil, 33, 359-472
Nye, P.A and P.B. Tinker. 1977. Solute movement in the soil-root system, Blackwell
Scientific Publications,Oxford
Stefan, J. 1889. Uber einige probleme der theorie der warmelettung, Zitzungberichte der
Kaiserlichen Akademic der Wissenschaften Mathematisch-Naturwissenschaftliche classe,
98, 473-484
Tarzia, D.A. 1984. Soluciones exactas del problema de Stefan unidimensional,
CUADERNOS, Inst. Mat. "Beppo Levi", Rosario, 12, 5-36
Tarzia, D.A. 1988. A bibliography on moving-free boundary problems for the heat-
diffusion equation. The Stefan Problem, Progetto Nazionale M.P.I."Equazioni di
Evoluzione e applicazioni fisico-matematiche", Firenze with 2528 references.
Tarzia, D.A. and L..T.Villa. 1989. On the free boundary problem in the Wen-Langmuir
shrinking core model for noncatalytic gas-solid reactions, Meccanica, 24, 86-92
Wen, S.Y. 1968. Noncatalytic heterogeneous solid fluid reactions models, Industrial and
Engineering Chemistry, 60,9, 33-54

 


