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Analytical study of the effects of some soil and plant parameters on r
oot growth due to absorption of one mobile ion: A  free-boundary
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Abstract

The object of our study is : A model for root growth through a free boundary problem and the effects
resulting from differences in nutrient availability and transport of one only mobile nutrient between the root
surface and the rhizosphere produced by a absorption Michaelis-Menten for low and high concentrations. The
model equations are solved by two methods: the quasi-stationary method and the balance integral method.
The numerical solutions are used to compute radial root growth. Curves of nutrient concentration at the root-
soil interface curves as a function of root radius as well as curves representing  root radius as a function of
time are plotted. The parameters which are varied are the root absorption power, flux velocity at the root
surface, efflux, rhizosphere radius, diffusion coefficient,  buffer power, and maximun influx. The two
methods show the theoretical results for radial root growth in the range of low and high concentrations. The
balance integral method provides more detailed information .

Introduction
 
 One of the methods for studying the nutriet uptake by plant roots, which can be a satisfactory method of
modelling the plant-root system is by use of the partial differential equation for convective and diffusive flow
to a root, and simulation models for nutrient uptake have frequently been used in the evaluation of the effect
of soil and root characteristics on nutrient uptake (Nye et al., 1969; Claasen et al., 1976;  Cushman, 1982).
These models have only considered nutrient uptake and have supposed an exponential root growth, without
taking into account effects of coupling between nutrient transport and root growth. Because of the difficulties
in modelling these complex processes, in recent articles (Reginato et al., 1990, 1991), as a first aproximation
to a real, more complete description, a method for computing the effects on root growth owing to absorption
of one nearly inmobile nutrient by means of a free boundary problem has been proposed. In these articles, the
root radius s(t) as a function of time and the interface concentration C(s) as a function of the root radius s(t)
are computed by the quasi-stationary method (Crank, 1984) with a contour condition representing a fixed
rhizosphere border. Also, the interface concentration C(s(t),t) as an explicit function of s(t) and the time t, as a
the root radius s(t) vs. t are computed by the balance integral method (Goodman, 1958; Reginato et al. 1992).
Both methods are based in the principle of conservation of mass in the soil as well as at the root-soil interfase.
The goal of the present paper is to compute the root radius s(t) as a function of t and the interface
concentration C(s(t),t) as a function of s(t) through the quasi-stationary and the balance integral methods with



a null flux condition on rhizosphere border valid for mobile ions, in order to estimate the effects of different
parameters on root growth for low and high concentrations (not saline conditions).

The free boundary model and governing equations

 Because of the rather complicated scenario of the plant-root system, as a first step toward achieving
some understanding of the physical and chemical processes involved, an idealized one-dimension diffusion-
convection ion transport and radial root growth model was chosen for this study. As described for us
(Reginato et al., 1990, 1991) it is assumed that : a vertical cylindrical root is immersed in a porous
homogeneous and isotropic medium (the soil) while moisture, temperature and light conditions are
maintained at a steady state. It is assumed that the nutrient uptake occurs at the root absorption zone, and the
root hairs are not considered in the present model. The rate of uptake can be described by a Michaelis Menten
equation, and the rate of influx at infinite concentration (J ) and the Michaelis Menten constant (K ) arem m
independent of the flux velocity of soil solution at the root (v ). The nutrient transport occurs via convectiono
and diffusion in the radial direction only (the latter takes place in soil solution phase only). It is assumed that
the diffusion coefficient (D) and the buffer power (b) are independent of the nutrient concentration, which
implies that there is a linear relation between C and C , where C is the total diffusable ion concentration andl
C  is the ion concentration in soil solution. No allowance for a change in J , K , or E (efflux) with age isl m m
made. It is also assumed that the coefficient diffusion is independent of the flux, and the convective velocity
of water at root surface is not affected by nutrient concentration. Production or depletion of nutrient by
microbial or other activity is considered null, and owing to the proposed model not taking into account the
energy balance implicit in the root metabolism, we assume that the nutrient taken up is totally available for
root growth. At this point, only a fraction is available for root growth and the remaining nutrient is available
for shoot growth. So, we arrive to only qualitative conclusions. From now on, we shall denote C  by C forl
convenience in the notation. The governing equations for convective and diffusive transport of nutrient to the
root (Cushman, 1982) as well as the governing equations for root growth at the root-soil interface for low
concentrations (J kC) are given in the following free boundary problem to one phase (the soil) (Crank,m µ
1984; Tarzia, 1988; Tarzia et al. 1989) (In order to simplify the model, without loss of generality, radial
growth in cylindrical coordinates is considered) by:
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solution exists. Equation i) represents a simple application of the principle of conservation of mass (in soil)
under steady moisture conditions with the nutrient flux consisting of two components (diffusive and
convective) (Cushman, 1982), Equation ii) is the initial condition, and Equation iii) is the boundary condition
on the rhizosphere radius taking into account inter-root competition for the nutrient considered, and is a more
realistic condition when the more mobile nutrients are considered, Equation iv) representing the mass nutrient
balance conditions at the soil-root interface, and equation v) is the initial condition for the free boundary s(t).
v (t)  is the rate of radial root growth,  is a stoichiometric coefficient, R is the rhizosphere radius, ands

ds(t)
dtœ a

s  is the initial root radius.  The parameter  is given by 0. (r) is the initial concentration profileo
v s
Db% % Fœ *o o

(given by the equation (11) below). The two free boundary conditions (1-iv) can be written by :
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 The solution to problem (1) is given by:
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and s(t) is the unique solution of the following Cauchy problem (Ince, 1956; Kreider et al., 1968):
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 Moreover, the interface concentration is given by the following expression:
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that is, the interface concentration does not depend explicitly on variable t.
 We can remark that the solution, given above, for the problem (1) exists and has a physical meaning if
the conditions
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solution of the equation:

 (x)  1 ,                x (0, 1)        (18)   3 œ −



with:
 (x)  (1 x) x     with x (0, 1),       (19)   3 œ $ −)x 

 (x)        with x (1, 2).       (20)  < œ −x
x 1"

 The solution of the Cauchy problem (12) is computed numerically by the Runge-Kutta method for
ordinary differential equations (Conte and Boor, 1972). Figures  1 to 12 represent theoretical results for the
interface concentration C(s(t),t) vs. s and the root radius s(t) vs. t as a function of absorption power k for low
concentrations and parameters which satisfy the condition (17). For simplicity we choose the parameter a
equals to 1, i.e. we assume that for each ion which arrives to root only one carrier is available for the
absorption. Results of a sensitivity analysis using the free boundary model are shown in Figure 3; the initial
values used for the analysis are shown in the same figure. Each parameter has varied between 0.5 and 2.0 of
its initial value, whilst all other parameters were held constant at initial values following a similar
methodology given in Barber, 1984.
 A similar set of equations for high concentrations are given in the following free boundary problem
assuming that the maximun influx is given by J J   (J E 0) if we replace condition (1-iv) by :µ " *m m
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 The solution of problem for high concentrations  is given by :
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and s(t) is the unique solution of the following Cauchy problem:
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which is equivalent to the condition x ( )  1, where  x   x ( ) and function  are defined3 3 3
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before. Therefore, we obtain, that the interface concentration is given by the following expression:
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The solution of Cauchy problem (30) is computed numerically by the Runge-Kutta method for ordinary
differential equations. Figures 4 to 5 represent theoretical results for the interface concentration C(s(t),t) vs. s
and the interface position s(t) vs. t for high concentrations as a function of rhizosphere radius R. Results of a
sensitivity analysis using the quasi-stationary method for high concentrations are shown in Figure 6.



In order to compute C(s(t),t) as a explicit function of s(t) and  t, and s(t) for a more general rank of
concentrations we propose the following free boundary problem with the conditions 1-iv) given by:
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 The two free boundary conditions f(C) and g(C) can be now  written by:
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 The interval (C , C ) represents the range of concentrations for which g(C) 0 and C  represent the" $
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minimun soil solution concentration required for root growth.
 To solve the problem with (32) (that is, to compute C  C(r,t) (in particular, C C(s(t),t)  and theœ œ
free boundary interface r s(t) a priori unknown) we apply the mass balance integral method (Goodman,œ
1958; Reginato and Tarzia, 1992) to the present case for root growth. The solution is found integrating the
partial differential equation (1-i) in r on the domain (s(t), R). Thus:
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Replacing (38) in Eq. (42), after some elementary manipulations we obtain the following system of two
coupled ordinary differential equations (see Appendix B.) (valid for the cases   1, 2, 3):% Á
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The initial profile concentration (r) given by the Eq. (44) above has been computed by the quasi-stationaryF
method (Reginato et al., 1990) for low concentrations and it is determined by the system. The functions F  arei
given by:
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 We can remark that for the particular cases   1, 2 and 3, a similar system to (43) of two ordinary% œ
differential equations can be obtained . The solution to system (43) is computed numerically by the Runge-
Kutta method for a system of ordinary differential equations. Figures 7 and 8 represent theoretical results for
the interface concentration C(s(t),t) vs. s and the interface position s(t) vs. t  as a function of absorption power
k in the range of low concentrations and parameters which satisfy the condition (17).



 Results of a sensitivity analysis using the balance integral method for low concentrations are shown in Figure
9.

 For high concentrations we obtain a quite similar system of ordinary differential equations with the
initial profile of concentrations (computed by the quasistationary method for high concentrations) given by:
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 Figures 10 and 11 represent theoretical results for C(s(t),t) vs. s and s(t) vs. t respectively as a function
of rhizosphere radius R in the range of high concentrations and Figure 12 represent the results of sensitivity
analysis for predicted root growth through the balance integral method for high concentrations.



Conclusions

 From the analysis of the results given by the quasi-stationary method, we conclude that for low
concentrations the results of sensitivity analysis indicate that predicted s(t)  increases rapidly with  an increase



in v  and R (Figure 3). Values for k, b, D, E, and s  had little or no effect because the mathematicalo o
aproximation of method is poor. On the other hand, for low concentrations the results of sensitivity analysis
obtained for the balance integral method (Figure 9) likewise indicates that predicted s(t) increases rapidly
with v  and R. The increase in v  represents an increase in total nutrient available for the plant, since, if theo o
remaining parameters are held constants, increasing v  increases the convective flux to root. Increasing Ro
increases the rhizosphere volume and so a greater ion quantity is available. At the same time we conclude that
the predicted s(t) increases moderately with J . Values of b and D had little or no effect, whilst increasing k,m
E, and s  the predicted s(t) decreases. The decrease with k (Figure 8) occurs because the gradient at root-soilo
interfase (given by the Eq. (4)) as a function of k and C(s) decreases (the expression g(C(s(t),t)  œ 1

Dbc d(k v )C(s(t),t) E  takes into account the combined effects of increase in k and the decrease of C(s(t),t) as" "o
a function of k (Figure 7)). The decrease with s  occurs because, although the root surface increases as s , theo o
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rhizosphere volume available decreases as L (R s ) where L is the length root  and taking into account that# #" o
R s  then (R s ) s  . (No allowance for a change in L with time is made because we have only¦ " *o o o

# # #

considered radial growth).
 From the analysis of the results obtained by the quasi-stationary method, the interface concentration
become nearly constant after a week elapsed (Compare Figs.1 and 2), whilst from the results obtained by the
balance integral method the interface concentration is constant throughout the period simulated (Figure 7) in
agreement with the De Willigen's results (De Willigen, 1981) on N uptake. From the analysis of the results
obtained by the quasi-stationary method and the balance integral method for high concentrations, the results
of sensitivity analysis indicate that predicted s(t) increases rapidly with an increase in v  and R (Figures 6 ando
12). Values for b, D, E an J  were without effect or had little effect. The predicted s(t) decrease with respectm
to s .o
 By comparing the results obtained by the quasi-stationary method and the balance integral method we
can conclude that: firstly, the mathematics of the quasi-stationary method allow analytical expressions which
must be satisfied by the system parameters, such as the inequality (17) and, secondly the general qualitative
behavior of the results is similar for both methods, although the balance integral method gives us a more
detailed theoretical information with respect to dependence on system parameters, for example, for low
concentrations, the variation of s(t) vs. t with respect to the parameter k is negligible for the quasi-stationary
method (Figure 3) whilst the balance integral method gives us an appreciable change (Figure 9).
 In conclusion, this paper represents a qualitative approach for the effects on root growth due to
absorption of only one mobile nutrient. From comparison between the results of the present model and the
model for ions that are relatively immobile for low and high concentrations (Reginato et al. 1990, 1991) we
conclude that the efficiency of absorption kinetics (J  kC or J  J , respectively) is greater for lowœ œ m
concentrations for both models. Moreover, these models are useful as a basis for developing more complex
models for transport of nutrients and their effect on root growth, as for example, these same models taking
into account the root lengh (the effects of some parameters could be change) and simultaneous absorption of
one or more inmobile and mobile ions.
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Appendix

Part A : The expression for C(r,t) and s(t) can be obtained by a similar method(quasi-stationary method)
developed in Reginato et al. (1990). Function I, given by (14), satisfies the following properties:
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the condition (17) is a consequence from the following equivalences:
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where x   x ( ) 0 is the unique solution of the equation (x) 1 with x (0, 1).3 3œ * œ −) 3

 Moreover, function (x) verifies the following conditions:3 3œ
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Then the solution of the ordinary differential equation (12) is well defined because
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Part B  : Replacing (38) in Eq.(42), after some manipulations, we obtain:(Integral balance)
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and, taking into account (44), we obtain:
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Similarly, we obtain:
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Finally, replacing (B1) and (B2) in Eq. (42), after elementary manipulations, we obtain the system (43).



Nomenclature

 r:  Position (radius) coordinate       [ cm ]  

 t:  Time          [Sec ]

 J :  m Rate of influx at infinite concentration                     # ‘Mol
Sec-Cm#

 K   m: Michaelis Menten constant            # ‘Mol
Cm3

 k:  Absorption power of root            # ‘Cm
Sec

 v :  o Flux velocity of soil solution at root surface            # ‘Cm
Sec

  D:  Effective diffusion coefficient            ’ “Cm
Sec

2

 C:              Total diffusible ion concentration            # ‘Mol
Cm3

 C :  l Ion concentration in soil solution                                # ‘Mol
Cm3

 C(s(t),t): Ion concentration in soil solution  at root-soil interface                                                        # ‘    Mol
Cm3

 (r):  F Initial soil solution concentration profile            # ‘Mol
Cm3

 s :  o Initial radius         [ Cm ] 

 E:  Constant efflux                 # ‘Mol
Sec-Cm2

 s(t):  Instanteneous root radius        [ Cm ]  

 v (t):  s         Rate of radial root growth             # ‘Cm
Sec

   Root lenght         [ cm] L:

 R:  Rhizosphere radius        [ Cm ]  

 Buffer power         Dimensionless b:  

 a:  Stoichiometric coefficient        Dimensionless  

     % Parameter         Dimensionless

   Parameter          !1
1

Cm’ “
 Parameter         !#  ’ “Mol

Cm4

 Coefficients         ! $(t), (t) # ‘Mol
Cm#

 (t), (t), (t) Coefficients          " # / # ‘Mol
Cm3

 (t)   Coefficient         ( # ‘1
Cm#




