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Motivation
We want to solve a large sparse system of linear equations

Axr =0b.
We assume that A is obtained from discretization of a partial differential equation.

e Direct methods work always (slow),
e Iterative methods (may) work fast.
e Multigrid is potentially a very fast method.

The problems arise from discretization of partial differential equations, like they are
used to describe

e Single phase flow,
e transport,
e Mmulti phase flow,
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Complexity of linear solvers

The complexity of solvers, i.e. the number of operations necessary to solve the
linear equations, varies strongly with the method used. Let

h =+v/N,N be the number of unknowns,
A has a constant number of entries per row (sparsity)

A reduction of the residual r :=b — Ax
by a factor of € takes

Dimension d=2 d=3
Gaussian elimination O(N3) O(N3)
Richardson, GS, Jacobi O(N?) O(N?'®")
Conjugate Gradients (CG) O(N'®) O(N!33)
Multigrid method O(N) O(N)

The number of operations for one step of the linear iteration methods (J, GS, R)
is O(N).
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Classical methods
e Problem: solve Ax = b for large A
— Linear iterative solution method

e Iteration scheme reads:
Tit1 =z + M1 (b— Ax;)
with splitting: A=L+ D+ R
Possible methods are:

e Richardson: M =1

e Jacobi: M =D

e Gauss-Seidel: M =L+ D

e Symmetric Gauss-Seidel, ILU...

Including a scalar damping factor w the final method reads
Ti+1 = x; + wM1(b—Az)
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e Example: Stencil for A from finite difference scheme
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Convergence

The iterative scheme is said to converge if
limx; =z Vxzo (initial guess).

1—>00

A linear iterative method with iteration matrix S =1 — M~1'A converges if

p(S) <1 p(S) the spectral radius of S.

o If A is symmetric, positive definite the Richardson and the Jacobi method
converge for suitable w.

e T he Gauss-Seidel method converges for all symmetric, positive definite matri-
ces.
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Disadvantage of classical iteration methods:

Convergence rate — 1
if the number of unknowns N — oo.

Example for the convergence rates of Gauss-Seidel:
—Au=f, in [0,1]°

Step | N=49 | N=225 | N=961 | N=15876
1 0.5604 | 0.7893 | 0.8975 0.9749
2 0.6174 | 0.8562 | 0.9386 0.9861
3 0.6196 | 0.8708 | 0.9494 0.9891
10 0.6189 | 0.8797 | 0.9654 0.9941
Reason:
Convergence < spectral radius p(S) < 1
For large N one finds:
p(S) =1-0(5%) (Jacobi)
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Multigrid methods

Observation: Classical iteration schemes act like “smoothers”

e Error components corresponding to large eigenvalues are damped efficiently.
e Error components corresponding to small eigenvalues are damped slowly.

Example for d = 1:




— High-frequency contributions of the function are reduced very well

— A smooth function can be represented on a coarser grid well
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Idea: First to smooth,
then to represent the remaining error on the coarser grid

and to reduce it here (by smoothing) = coarse grid correction

— Two-grid method

By recursive appliance of this idea — multigrid method with

convergence rate <60<1

independent of the number of unknowns.
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Multigrid algorithm:

For solving A;x = b; with start vector zg

iQiAHSWTNV

{
if (I =0) z; := Ay'by (coarsest grid)
else
{

smooth x; with classical scheme on grid [
calculate defect d; = Ajxz; — b, (Aje; = d;)
transfer d; on to grid I — 1

e—1.=0

MGM (ej-1,di-1,1 — 1)

transfer e;_; on to grid [

T = x; + e

smooth again z;

— Tit1
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Transfer between the grids is done by prolongation and restriction operators:
— We introduce two linear mappings

P :V,_1 — V; prolongation, R;:V;,— V,_;1 restriction
How should P, and R; be chosen?

e P, and R; should have the correct order, i.e.

mp + my > 2m

e In the finite-element case P, is the canonical finite-element interpolation

e For the restriction one uses R; = mﬂ in the finite-element case.

J. Eberhard, Classical iterative methods and multigrid methods

11



Multilevel methods

Problems:
e Appropriate choose of restriction and prolongation
e How can one get A; on grid [

Possibilities are:

e Usually: linear/bilinear interpolation
Matrix-dependent transfer operators — algebraic multigrid methods

e New discretization
Galerkin product

Average methods and discretization — algebraic methods
Upscaling methods and discretization
Adapted choose of the grid — algebraic multilevel methods
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Application

Flow equation for a porous medium:
—Vk;(z)Vu(z) = f(x) in [0,1]?
+ boundary conditions
u = piezometric head (pressure)

k; = permeability of the medium
f = source term

Discretization — Az =10

J. Eberhard, Classical iterative methods and multigrid methods

13



Results:
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Convergence rate:

kkkkkkkkkkkkkk linear_solver.ls.mgs kkkkkkkkkkkkkok
0 u: 1.44086e+01 -—-

1 u: 7.72044e-01 5.35819e-02 7 u: 2.27608e-05 2.97320e-01
2 u: 7.20197e-02 9.32845e-02 8 u: 6.90513e-06 3.03377e-01
3 u: 1.05129e-02 1.45973e-01 9 u: 2.22084e-06 3.21622e-01
4 u: 1.65848e-03 1.57755e-01 10 u: 7.03723e-07 3.16871e-01
5 u: 3.35678e-04 2.02401e-01 11 u: 2.24994e-07 3.19719e-01
6 u: 7.65531e-05 2.28055e-01 12 u: 7.13847e-08 3.17273e-01

12 average: wu: 1.44086e+01 7.13847e-08 2.031e-01
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Summary

e Multigrid methods use a hierarchy of grids
— Classical iteration methods are taken as smoother

— Error correction is calculated on the coarser grids
— Efficient solver for Ax = b

e Extensions — algebraic multigrid methods
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